
volume 3 issue 3 2005 www.mxdj.com

ANIMATIONS: T H E F A B T H R E E

FIREWORKS
Uncovering Fireworks Masks

FREEHAND
Animated GIF with Vector Art

COLDFUSION
Printing Rich Document Formats

DIRECTOR
Dealing with the Flash Communication Server

P. 30 3.3

THE LEADING MAGAZINE
FOR MACROMEDIA MX
DEVELOPERS & DESIGNERS

Title:
Deck:
Byline: by Laura Sehdeva and Chip Moeser

take to the skies

JetBlue Uses MX for
Online Training of
its Crewmembers

with captivate & flash

JetBlue uses MX for
 online training of

 its crewmembers

 the skies...
take to

Uncovering Fireworks
Masks
Part 1
by kim cavanaugh

march 2005

Take to the Skies with
Captivate & Flash
JetBlue uses MX for online
training of its crewmembers
by laura sehdava & chip moeser

A Model for Dealing
with the Flash
Communication Server
in Director
Combining Director and the
FlashCom Server
by nima azimi

7 Calling All MX
Developers
You are all
contributors
by charles e. brown

58 vanguard
The Unusual
Suspects
by james hill design

16 Flash, Web Services, and
Data Binding
Part 2 - Using data binding
through code
by darron schall

26 Between a Rock and a
Soft(ware) Place
Streaming Web-based training
development with Captivate & Flash
by bryan zug

2 • 20054 • MXDJ.COM

30 Fireworks-Animated GIF with
FreeHand Vector Art
It's fantastic, fabulous, and fun
by joanne watkins

46 Printing Rich Document Formats
with CFMX7
How to print web pages in FlashPaper or
PDF Format
by xu chen & sherman gong

50 Creating Better Forms Faster with
ColdFusion MX 7
Macromedia makes time to give the cfform
tags some love
by mike nimer

54 RollingYour Own Event Gateway
Writing and using event gateway
in CFMX 7
by tom jordahl & jim schley

42

34

20
8 The MX

Blogosphere
Around the MX world
in 80 blogs
by mxdj news desk

hen I took over this publica-

tion last September, I stated

that I wanted to eventually

change the tone of the publication so that

the articles did not seem like “textbook”

exercises. Instead, I wanted to take on a more

pragmatic approach by showing how many

businesses are using the Macromedia MX

packages. This month is the fulfillment of

that wish.

 Last November, while going to New

Orleans for the MAX conference, I had my first

experience with JetBlue airlines. I was noth-

ing short of astonished. In spite of its having

lower fares than most other airlines, their

waiting area had free Internet access, the

seats on the plane were roomy and leather,

each seat had its own television screen to

see a variety or programming (including the

news outlets), and the staff was friendly and

courteous. No, I am not talking about first-

class; I am talking about ALL the seats. Their

economy fare offered more amenities than

the first class of most airlines.

 At the conference, I was pleasantly

surprised to meet Laura Sehdeva (quite

by chance) who works with Macromedia

products for JetBlue. After telling her

how much I enjoyed her company’s

airlines, I asked her to consider doing an

article about their usage. It is with great

happiness that that article will be this

month’s featured story.

 In addition, Tom Green forwarded

me an article from Bryan Zug and the

Children’s Hospital of Seattle.

 Bryan is using Captivate to help

implement training programs for the

staff. If anyone needs proof of the impor-

tance of this, here's an excerpt:

 “Imagine the differences between a criti-

cal medication order for a two-week old baby

and a 17-year old teenager and you begin

to understand the complexity of a pediatric

implementation of this kind of system.”

 I applaud the work Bryan is doing

and hope we, as a community, can help

him more. They are doing fine work at

this institution.

 Over the next year, we will be featuring

a lot of developers who use their talents

for major companies and even a few very

high-profile websites. However you don’t

have to work for a Fortune 500 company,

or develop a major website, for your story

to be important. When I teach my seminars,

I get people ranging from a small insurance

brokerage service to NASA; from an inde-

pendent graphic designer to the Federal

Reserve. All of them, without exception,

teach me something new in the way they

use the products.

 For that reason I want ALL of you, the

readers of this publication, to consider

yourself the contributors. I would love to

go to each and every reader and ask you to

contribute. I don’t care if it is something quite

elementary or something involving very

advanced techniques. If you use Macromedia

products, we want to hear from your.

 The benefits are many fold. However,

consider this: by sharing your ideas with

other users, you are helping the commu-

nity to grow. In addition, when you write,

you are also encouraging your fellow users

to contribute. In the end, ALL will benefit.

 Finally, in an age of networking

importance, you are developing net-

works with your fellow users which will

also benefit all.

 It is the classic Win – Win scenario.

 If anyone wants to write, please send

me a proposal stating the topic, possible

length in words, and when you will have

it completed by. I will then forward it to

the proper editor and set the proposal

up. Our team of editors will guide you

through the process.

 This month we will be continuing our

examination of the new ColdFusion MX7.

I hope everyone has had the chance to

download it from the Macromedia site

and give it a test drive. If not, I strongly

suggest doing so. Try it while reading the

articles in this month's journal.

 Finally, I want to thank author Nima

Azimi for his unique article combin-

ing Flash Communication Server and

Director. I feel that this is an important

article that could open a lot of possibili-

ties with the use of the two products. I

will be anxious to hear feedback.

 When will I be printing your

article?

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Editor-in-Chief
Charles E. Brown charles@sys-con.com
Dreamweaver Editor
Dave McFarland
Flash Editor
Brian Eubanks
Fireworks Editor
Joyce J. Evans
FreeHand Editor
Ron Rockwell
Louis F. Cuffari
Director Editor
Andrew Phelps
Captivate Editor
Tom Green

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Editor
Nancy Valentine, 201 802-3044
nancy@sys-con.com

Associate Editor
 Seta Papazian, 201 802-3052
seta@sys-con.com

Technical Editors
Jesse Warden • Sarge Sargent

To submit a proposal for an article, go to http://
grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832, frank.
cipolla@epostdirect.com

Promotional Reprints
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com

Copyright © 2005
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by
any means, electronic or mechanical, includ-
ing photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish, and
authorize its readers to use the articles submit-
ted for publication. MX and MX-based marks
are trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is inde-
pendent of Macromedia. All brand and product
names used on these pages are trade names,
service marks or trademarks of their respective
companies.

fro
m

 th
e

 e
d

ito
r

w
You are all contributors

by charles e. brown

Calling All MX Developers

Charles E. Brown is the

editor-in-chief of MX

Developer’s Journal. He is

the coauthor of Fireworks

MX, Zero to Hero and

the auther of Beginning

Dreamweaver MX. He

also contributed to The

Macromedia Studio MX

Bible. Charles is a senior

trainer for FMC on the MX

product family.

charles@sys-con.com

2 • 2005 MXDJ.COM • 7

f one of the true signs of a vibrant

developer community is an active

blogosphere surrounding a technol-

ogy, then the MX suite of technolo-

gies certainly passes that test with flying

colors. In case you’re not yet active your-

self, MXDJ brings you a comprehensive

selection from some of the best known

(and many of the not so well-known too).

Don’t forget that you can blog yourself

now, too, at the MXDJ site – you can get

started in just 3 minutes at http://blog-n-

play.com.

Blog Topic: Dreamweaver
Dreamweaver Extension Virus?

By Tom Muck from “Blogging on MX”

(http://tom.mxdj.com/)

 Many users have problems with rogue

extensions, bad extensions, or extensions

that have been uninstalled improperly.

Dreamweaver’s Extension Manager is not

entirely reliable when installing/uninstall-

ing extensions. This is because of the way

that modern operating systems work with

multiple users, and because Macromedia,

like other software companies are forced

to comply with a multi-user configura-

tion.

 When you run Dreamweaver, you can

be logged onto the operating system as

yourself, the computer Administrator, or

another user. When you install an exten-

sion, the files are not installed to the

main program directory, as they were in

the past with Dreamweaver 4 and earlier.

They are installed in the local user direc-

tory, or in the All Users directory.

 Danilo posted about the

Dreamweaver configuration folder loca-

tions in a previous entry at CMXtraneous

(http://www.communitymx.com/blog/

index.cfm?newsid=27).

 One of the major problems that has

plagued extension developers from the

beginning is when a rogue extension

developer overwrites a Dreamweaver

system file, or any Dreamweaver

Configuration folder file. For example,

some extension developers try to

add additional functionality to the

Dreamweaver Recordset. Instead of creat-

ing their own version of the Recordset

files (such as Recordset.htm and

Recordset.js), they modify the existing

Dreamweaver files.

 That works great if this is the only

extension the user will ever install. If the

user wants to install an extension from

another developer, however, this could

severely break the way that Dreamweaver

works, because expected functionality

might not be there or might act differ-

ently. Additionally, if two rogue extension

developers overwrite the same file, one

of them is out of luck because the second

extension overwrites the first extension.

 Make no mistake, when a

Dreamweaver configuration file is over-

written by an extension developer, it is

the equivalent of a virus, a spyware or

other intrusive worm. The installation is

now corrupt. Additionally, some exten-

sion developers are including a directive

in the .mxi file that creates the extension

package, putting a systemfile=“true”

directive for each system file that they

overwrite. This causes problems as well,

because when you uninstall the rogue

extension, the bad system file is left in

your Dreamweaver installation. The effect

of this is that your Dreamweaver installa-

tion is corrupted. Dreamweaver is using

the corrupted file rather than the file that

Macromedia created.

 Another problem exists: when

Macromedia comes out with new ver-

sions of Dreamweaver, these rogue exten-

sions are still being distributed, and are

being used by users. Let’s say, for exam-

ple, that a new version of Dreamweaver

has to change the Recordset.js file in

order to work with some new function-

ality. A user installs an extension that

overwrites this file using a version from

the last version of Dreamweaver. The

program is now broken with no way to

recover other than deleting the local All

Users or the local user folder, or just mak-

ing it easy on yourself and reinstalling

Dreamweaver.

 More problems: If a Dreamweaver

user decides he wants to modify a file

in the Configuration folder, if the file

has been overwritten by an extension

developer, the user’s changes are not

respected.

 An additional note: when I say that

the file is “overwritten,” it’s not entirely

accurate. In a modern operating system,

the files are not overwritten in the main

Program Files directory (Application

directory on the Mac). The files stored

in the All Users supersede the files

stored in the Program Files directory. In

other words, if Dreamweaver requires a

Recordset.js file to run, the file will remain

untouched in the Program Files directory,

but a new version of the file is stored

by the Extension Manager in All Users.

However, to the uninformed user, this is

the equivalent of a corrupt installation.

The typical user does not know that there

is a special hidden directory that contains

rogue extension files.

 What to do about this? Well, the first

and most important step is to convince

these rogue extension developers that

what they are doing is harming the com-

blogging

The MX Blogosphere
Around the MX world in 80 blogs

by mxdj news desk

i

8 • MXDJ.COM 3 • 2005

munity. In their overzealous approach

to adding functionality to Dreamweaver,

they are basically spoiling the program

for other extension developers, and

setting the average Dreamweaver user

up for a corrupted installation full of

JavaScript errors every time they want

to open a file. Secondly, Macromedia

should step up to the plate and disallow

extensions to be downloadable from the

Exchange if the extension modifies core

Dreamweaver configuration files. Lastly,

users should write to extension develop-

ers that do this and demand that they

stop.

 It is a political issue, unfortunately.

The extension developers who do this

(I’m not naming names) insist they are

trying to make Dreamweaver better.

Some of us extension developers who

have been around a while have always

made an effort to extend Dreamweaver

without ruining it for the next guy,

though. Sadly, if it keeps up, more exten-

sion developers will do it and before you

know it every extension you install will

overwrite some other guy’s file, and no

extensions will work. What a mess that

will be. . .

 I issue a challenge to all Dreamweaver

extension developers to stop this practice.

It’s already late, but we can minimize the

damage going into the future. Extension

development has come a long way since

the early days of Dreamweaver, but if we

can’t develop extensions in a responsible

way, it is going to impact the way that

Dreamweaver users view extensions.

 What to do if you have a corrupt instal-

lation? The first thing you should try is

uninstalling the extension. Of course, that

doesn’t work always because of reasons

I’ve stated. If it doesn’t work, find the local

Configuration folders mentioned above

(not the main Program Files directory)

and rename them or delete them. This

will completely remove all extensions so

that your Dreamweaver installation will

be fresh again. Alternatively, reinstalling

Dreamweaver should do this as well.

Blog Topic: MX Blogging
“Googlejacking”

By Cameron Childress from “Cameron

Childress’ Blog”

(http://www.sumoc.com/blog/)

 It all started with reading a thread on

Slashdot about “Google Hikacking.” For

those just tuning in, here’s a summary of

what Googlejacking is (from http://clsc.

net/research/google-302-page-hijack.

htm):

 “An explanation of the page hijack

exploit using 302 server redirects. This

exploit allows any webmaster to have his

own “virtual pages” rank for terms that

pages belonging to another webmaster

used to rank for. Successfully employed,

this technique will allow the offending

webmaster (“the hijacker”) to displace

the pages of the “target” in the Search

Engine Results Pages (“SERPS”), and

hence (a) cause search engine traffic to

the target website to vanish, and/or (b)

further redirect traffic to any other page

of choice.”

Here’s what happens:

1. Googlebot goes to scammer’s site

2. Googlebot is given a 302 (redirect) to

the victim’s site

3. Googlebot indexes the victim’s site as

belonging to the original URL

4. Googlebot goes to the victim’s site

5. Googlebot realizes this URL is already

indexed and “belongs” (according to

the Google code) to the scammer.

6. The victim’s site gets lower rankings

Includes FREE FedEX domestic
shipping and Global Priority

Mail internationally.

Now you can ease any learning curve with nearly 200 movies and hands-on tutorials created
by an artist who has used the program since it was introduced. Every menu item, feature,
and tool is explained, and you’re given a reason to use each of them.

...I learned that I’ve been working way too
hard to accomplish various tasks since I was
not aware of many of the time- and effort-
saving tools.

It has been very helpful.

The course looks great!

I received the Casual FreeHand
MX Course and love it

I am very impressed with your product.

Gain control over vector artwork,
create layouts for brochures,
booklets, instruction manuals,
Web sites, Flash movies — and
do it all at your own pace.

www.brainstormer.org
3 • 2005 MXDJ.COM • 9

as the page is not even indexed, the

scammer’s site gets a higher ranking.

 A more detailed listing of how it

works can be found in this Slashdot com-

ment: http://slashdot.org/comments.

pl?sid=143465&cid=12024264.

If you have a Macromedia-centric blog

picked up by an aggregator and want to

test if your blog has been Googlejacked,

type the following into Google:

allinurl:yourdomain.com

 If some of the search results include

pages containing the exact content and

title as your blog, yet have a different

domain, you’ve been Google Jacked.

Admittedly, and per the descriptions in

the above linked paged, this could be by

accident some of the time, but the big-

gest offender in this case for me is edeli-

na.com. Go ahead, type that domain into

your browser (I’m not giving them any

more link visibility by linking to them). It’s

a craptastic cornucopia of spammy junk,

and they have a 302 redirect up an entire

family of Macromedia-centric blogs. I’ve

checked others, and we are virtually all

there as far as I can tell.

 Google Hijacking is worse than some-

one simply syndicating your blog content

on their site because it’s actually faking

our Google to think that it is your site via

302 redirects, which mean “temporarily

moved” as opposed to 301 which mean

“permanently moved.”

 After a little more investigation, I

found that the DNS host for edelina.com

is Abadon Studios based out of Aliso

Viejo CA. Searching for “Abadon Studios”

in Google also reveals that they have a

metric ton of other craptastic ethically

questionable SEO domains for all sorts of

things.

 The worst part of it is that the slime-

ball behind all of this seems to be using

Fusebox, which means he’s “one of us.”

 If you are affected by this, instruc-

tions on what to do about it can be

found posted by Google Guy on the

Slashdot thread (http://slashdot.org/

comments.pl?sid=143465&cid=1202459

9). It boils down to contacting Google’s

user support (http://www.google.com/

contact/spamreport.html) and using

the word “canonicalpage” in the com-

plaint.

 I would encourage anyone with an

affected blog to make a complaint.

Blog Topic: Cold Fusion
Hide Your Errors

By Steve Bryant from “A Web

Programmer’s Exploration”

(http://steve.coldfusionjournal.com)

 I have noticed that a great many

ColdFusion sites show the default

ColdFusion error when something goes

wrong. This is a bad idea for many rea-

sons.

 In the “Research-Based Web Design &

Usability Guidelines” put out by Usability.

gov, “Detect Error Automatically” was

given an importance of 5 out of 5.

In his popular “Top 10 Web Security

Tips” (http://www.sys-con.com/story/

?storyid=46366&DE=1) article, Michael

Smith listed “Have an error-handler” as his

number one security tip.

 In his article “Toward Better Error

Handling” (http://www.sys-con.com/

coldfusion/article.cfm?id=165), Charlie

Arehart covers some techniques for error-

handling in ColdFusion. As of the release

of ColdFusion MX 7, a new method exists

for handling errors in ColdFusion; the

onError event of Application.cfc.

 The onError event is only available

if you are using Application.cfc. To get

an introduction to Application.cfc, see

my “Application Events:onRequest”

(http://steve.coldfusionjournal.com/

read/1059556.htm) blog entry or see the

LiveDocs for Application.cfc (http://lived-

ocs.macromedia.com/coldfusion/7/html-

docs/00000692.htm).

 To add the onError method to your

Application.cfc, simply add code like the

following to Application.cfc (replacing the

comments with whatever code you want

to run when an error occurs).

<cffunction name=”onError”>

 <cfargument name=”exception”

 required=”true”>

 <cfargument name=”EventName”

 type=”String” required=”true”>

 <!--- Error handling code here

 --->

</cffunction>

 Of course, ColdFusion will raise an

exception (and run the code in onError)

when it runs in to a <cfabort>.

 In order to prevent that from adverse-

ly effecting your code, he suggests add-

ing the following lines to the top of your

onError method:

<cfif arguments.exception.rootCause

 eq “coldfusion.runtime.

 AbortException”>

 <cfreturn/>

</cfif>

 So now our onError method looks like

this:

<cffunction name=”onError”>

 <cfargument name=”exception”

 required=”true”>

 <cfargument name=”EventName”

 type=”String” required=”true”>

 <cfif arguments.exception.

 rootCause eq “coldfusion.

 runtime.AbortException”>

 <cfreturn/>

 </cfif>

 <!--- Error handling code

 here --->

</cffunction>

 So, now you can just take this code

and add your own error-handling code

(for example, display a user-friendly mes-

sage and send yourself an email), right?

Well, almost.

 While ColdFusion MX 7 is a lovely

product, it has a few bugs that still need

to be resolved. One bug occurs if you are

using jsessions and a session expires. It

results in a “Session is invalid” error being

displayed to the user.

 My format is slightly different

than Paul Kenney’s (http://www.pjk.

us/pjk/blog/index.cfm?event=showEn

tryForID&entry=9603C7B2-3048-28E9-

DAD333835BEAFD8A), but the result

should be the same. Here is a complete

example of an Application.cfc from a site

that used to use Application.cfm and

OnRequestEnd.cfm:

<cfcomponent>

<cffunction name=”onRequestStart”><

 cfinclude template=”Application.

 cfm”></cffunction>

<cffunction name=”onRequest”>

 <cfargument name=”targetPage”

 type=”string” required=”true”>

 <cfinclude template=”#arguments.

 targetPage#”>

10 • MXDJ.COM 3 • 2005

</cffunction>

<cffunction name=”onRequestEnd”><

 cfinclude template=”OnRequestEnd.

 cfm”></cffunction>

<cffunction name=”onError”

 returntype=”void” access=”public”>

 <cfargument name=”exception”

 type=”any” required=”true”>

 <cfargument name=”eventName”

 type=”string” required=”true”>

 <cfset var Except = arguments.

 exception>

 <cfset var SessionExpiration =

 false>

 <cfset var redirectUrl= “/index.

 cfm”>

 <cfif arguments.exception.

 rootCause eq “coldfusion.runtime.

 AbortException”>

 <cfreturn/>

 </cfif>

 <cfif StructKeyExists(Except,”Root

 Cause”) AND StructKeyExists

 (Except[“RootCause”],”Detail”)>

 <cfif Except[“RootCause”]

 [“Detail”] CONTAINS “Session

 is invalid”>

 <cfset SessionExpiration

 = true>

 </cfif>

 </cfif>

 <cfif SessionExpiration>

 <cfcookie name=”JSESSIONID”

 value=”” expires=”NOW”>

 <cfheader statuscode=”302”

 statustext=”Moved

 Temporarily”>

 <cfheader name=”location”

 value=”#redirectUrl#”>

 <cfelse>

 <!--- Code to output text to

 user and send email to site

 administrator goes

 here. --->

 </cfif>

 <cfreturn true>

</cffunction>

</cfcomponent>

 This is the lazy route of leav-

ing old code in Application.cfm and

OnRequestEnd.cfm. I would suggest

eventually moving the code around

to take advantage of the structure of

Application.cfc (hopefully more on that

later).

 Good luck!

Blog Topic: RIAs
RIA definition

By John Dowdell from “JD on MX”

(http://www.markme.com/jd)

 The term “RIA” was used frequently

this past month, but it was only while

reading the piping-hot comments at

a Scoble article (http://radio.weblogs.

com/0001011/2005/03/21.html#a9714)

about “Microsoft Outlook Web Access

being one of the first and best AJaX

apps,” that I remembered there actually

is a functional definition of Rich Internet

Application.

 It’s contained within that RIA white-

paper Jeremy Allaire wrote for the

Macromedia site in March 2002, which

was the first use of that phrase on the

web (according to searches later done at

recall.archive.org, which has since disap-

peared).

 I’ve copied the first section which

describes some of the requirements for

rich internet applications:

 “In the mid-1990s, explosive growth

in the Internet and the World Wide Web

drove widespread adoption of a new

model for content and applications using

personal computers connected to the

Internet. Coined “thin-client” computing,

this new model promised to lower the

cost of developing and delivering appli-

cations to end-user desktops, customers

and business partners, and to increase

the range of application types that could

be delivered. This model centered on a

very thin client based on HTML, and pow-

erful application servers that dynamically

composed and delivered “pages” to web

browsers.

 So far this model has proven success-

ful. However, it has also suffered from sig-

nificant drawbacks and limitations, espe-

cially around the richness of the applica-

tion interfaces, media and content, and

the overall sophistication of the solutions

that could be built and delivered. Indeed,

for many traditional application develop-

ers, while the web has offered significant

conveniences in terms of ease of deploy-

ment, the capabilities of the program-

ming and user interaction models have

forced users to suffer. In many respects,

much of the web application develop-

ment and deployment technology of the

late 1990s has had to adapt to the chal-

lenges imposed by the architecture inher-

ent in the web.

 The Internet of 2002 will be different.

End-users and businesses are demanding

more from their investments in Internet

technology. The ability to deliver true

value to users is forcing many companies

to look towards richer models for Internet

applications; models that combine the

media-rich power of the traditional

desktop with the deployment and con-

tent-rich nature of web applications.

Companies are also anticipating a growth

in the use of web services, or reusable

software components that are used as

services over the network, and looking

towards a world where applications will

need to share functionality and data

across many types of client devices. These

trends are driving the industry towards

next-generation rich clients.

 This is the backdrop upon which

Macromedia built Macromedia Flash MX

and Macromedia Flash Player 6.

Before detailing the technical aspects of

the Macromedia Flash MX client environ-

ment, it is important to note what we

consider to be the crucial aspects of rich

client technologies. Rich client technolo-

gies should:

• Provide an efficient, high-performance

runtime for executing code, content

and communications. The principle

here is that the end-user experience of

HTML-based web applications suffers

from a variety performance related

challenges. These include the request-

response page rendering model; the

need to dynamically generate large

blobs of text for transmission of simple

data; the lack of client-side data stor-

age; the inability to easily invoke and

use remote business logic, and even

the basic graphics model of HTML.

These all must be improved.

• Integrate content, communications,

and application interfaces into a

common environment. The end-user

experience of the Internet today is

fragmented into the HTML browser for

textual content and basic application

interfaces; multiple messaging clients

for performing communications func-

12 • MXDJ.COM 3 • 2005

tions; and multiple media players for

handling audio, video, and other forms

of media. Rich clients need to provide

deep integration for all of these types

of interaction.

• Provide powerful and extensible object

models for interactivity. While web

browsers have progressed in terms of

their support for interactivity through

the Document Object Model (DOM),

JavaScript, and DHTML, they still lack

the richness needed for building seri-

ous applications. Rich clients need

to provide a powerful, object-based

model for applications and events. This

common object model must integrate

user interface, communications, and

system level services.

• Enable rapid application development

through components and re-use. Rich

clients should support powerful com-

ponent-driven development, enabling

both third party and corporate devel-

opers to easily reuse visual compo-

nents to accelerate development, and

give junior developers access to com-

plex functionality. These components

should integrate seamlessly into the

designtime environment for ease of

development.

• Enable the use of web and data ser-

vices provided by application servers.

The promise of rich clients includes

the ability to cleanly separate presen-

tation logic and user interfaces from

the application logic hosted on the

network. Rich clients should provide a

model for easily using remote services

provided by back-end components,

whether hosted in an application serv-

er or accessed as XML web services.

• Embrace connected and disconnected

clients. While many users have got-

ten used to having to be online and

in a web browser to perform work,

the reality is that most applications

would benefit from the ability to be

used offline on occasionally connected

devices such as personal digital assis-

tants (PDAs) and laptops. Likewise,

many applications require support for

persistent connections with two-way,

notification-based communications.

Rich clients must enable both of these

types of applications to be easily built

and deployed.

• Enable easy deployment on mul-

tiple platforms and devices. Internet

applications are all about reach. The

promise of the web is one of content

and applications anywhere, regardless

of the platform or device. Rich clients

must embrace and support all popular

desktop operating systems, as well as

the broadest range of emerging device

platforms such as smart phones, PDAs,

set-top boxes, game consoles, and

Internet appliances.

 Macromedia Flash MX attempts to

address and enable all of these oppor-

tunities.”

Blog Topic: Aggregators
I Need a New Aggregator

By Christian Cantrell from “Christian

Cantrell’s Perspective”

(http://www.markme.com/cantrell)

 An unfortunate thing happened to

me this morning. I have an old evaluation

of NetNewsWire installed alongside the

free version of NetNewsWire Lite which

I use(d) extensively on a daily basis. This

morning, when using Quicksilver to open

NetNewsWire Lite, I accidentally opened

the old expired evaluation version of

NetNewsWire. For some reason, it over-

Contact Kristin Kuhnle
201.802.3026
kristin@sys-con.com R e rintsP

ON
CE

 Y
OU

’R
E I

N
IT

… …REPRINT ITONCE YOU’RE IN IT…

…REPRINT IT

. WebServices. Storage & Security. IT Solutions Guide. PowerBuilder. ColdFusion. WebSphere. LinuxWorld. Wireless. WLDJ. .NET. JDJ. MX

3 • 2005 MXDJ.COM • 13

wrote all my NetNewsWire Lite feeds with

the default list of feeds that come with

the application.

 This is very much not a good thing.

I’m sure I had well over 100 feeds pertain-

ing to everything that interests me (most-

ly technology, but also some personal

weblogs, watch weblogs, etc.). I have a

backup from November that will allow

me to recover many of my feeds, but my

collection was constantly evolving and

being refined, so the last four months of

tweaks are gone.

 Anyway, enough lamenting. I’m look-

ing at this as an opportunity to start

fresh with a new collection of feeds, new

organization, and certainly a new aggre-

gator. I really like(d) NetNewsWire, but

I don’t think I can bring myself to use

it again. Additionally, I’m tired or wait-

ing for the 2.0 version just to get Atom

support (it’s been in beta for a very very

long time).

 So my first question is what aggrega-

tors are Mac users out there using these

days? I’m willing to go with either local or

web-based. Once I settle on a new aggre-

gator, I will then ask people to post some

of their favorite blogs. I’m pretty sure I

can have all my old feeds back with a

couple of hours of searching and surfing,

but I’d like to use this opportunity to find

some new, more obscure feeds worth

aggregating. That’s a question for another

time, though. First the aggregator.

Blog Topic: New Flash Book
Flash Anthology

By Dave Yang from “swfoo”

(http://www.swfoo.com/)

 SitePoint sent me Flash Anthology

- Cool Effects & Practical ActionScript by

Steven Grosvenor and asked me to write

a review.

 The back cover of the book says “best

practice solutions to common Flash

problems,” which led me thinking it was a

book on design patterns. However, in the

“Who Should Read This Book?” section,

it says the book is aimed at beginning

and intermediate Flash developers and

designers. The book is not for learning

Flash MX 2004, ActionScript, OOP, or

design patterns.

 Instead, the book focuses on using

ActionScript 1.0 “to achieve extensible,

adaptable, and aesthetically pleasing

results.” There are over 60 ActionScript

solutions, covering 10 chapters: Flash

Essentials, Navigation Systems, Animation

Effects, Text Effects, Sound Effects, Video,

Flash Forms, External Data, Debugging,

and Miscellaneous Effects.

 I was a bit surprised to see no

ActionScript 2.0, typed data, classes...

etc., from a book published almost a year

after Flash MX 2004 was released. Instead,

I see most examples dealing with the

prototype , scattering of _root , capitaliza-

tion of method names in one section and

lowercase elsewhere...etc.

 To be fair, not all Flash projects

require ActionScript 2.0, OOP or pat-

terns. In fact, I’d think most typical Flash

projects are still one-offs that have

short life cycles. As Branden Hall says,

sometimes pragmatic programming can

be an ideal solution, especially for these

quick one-off projects. Perhaps this

book is for beginning Flash designers

who work on small projects. SitePoint

offers 30 days, risk-free, money back

guarantee; so I guess it’s worthwhile

to give it a read if you’re a beginner

designer looking for ActionScript to cre-

ate cool effects.

 On a side note, for ActionScript 1.0

and effects, I’d suggest Robert Penner’s

book (http://www.robertpenner.com/) as

an example of best practices.

Blog Topic: Flash
Make the World a Better Place with Flash

By Owen van Dijk from “MX Traveler”

(http://ohwhen.typepad.com/)

 Did you know that on your birthday

24.000 people will die of hunger and

hunger-related causes? Last year I was

involved with a special project that was

part of the worldwide awareness-raising

campaign First8. The heart of the cam-

paign was a pocket-sized photography

book with powerful portraits of people liv-

ing and surviving in difficult and unaccept-

able circumstances throughout the world.

 In September 2004 this book was

delivered by mail to 25,000 people

in positions of power and influence,

addressed to each individual person-

ally, by name. As the campaign was

anonymous, there was no return address,

only the address of this website. In the

Netherlands, 1.6 million copies of this

book, in mini-magazine format, were

distributed along with various magazines.

The book carries only this text:

 Today you are one of more than 25,000

heads of state, ministers, members of

parliament, monarchs, religious leaders,

captains of industry, journalists and other

influential people of 191 countries who hold

this printed glimpse of our world.

 For the first time in history we have the

means to end poverty.

Today it’s in your hands.

(www.first8.org)

 There was no return address: the send-

er of the book was anonymous. The recipi-

ent was being asked to think about his or

her own responsibility in the world: What

can you do, using your position or status?

 It also was a confrontational address

to the members of the United Nations on

the eve of the UN General Assembly in

New York on 21 September 2004; a call to

make an extra effort in the battle against

poverty and to stick to agreements made

in 2000, the Millennium Development

Goals:

1. Eradicate extreme poverty and hunger

2. Achieve universal primary education

3. Promote gender equality and empow-

er women

4. Reduce child mortality

5. Improve maternal health

6. Combat HIV/AIDS, malaria and other

diseases

7. Ensure environmental sustainability

8. Develop a global partnership for devel-

opment

 I’m proud to be part of this project,

and the whole team worked hard to

translate the message from the book to

an online experience. At the end of last

year, this project won a prestigious adver-

tising award; a Golden Epica (http://www.

epica-awards.com/). The Epica awards are

European prize for advertising and mar-

keting-communication in film, print and

on the web. Entries are judged on two

critera: originality of the creative concept

and the quality of the output.

 Although it’s always nice to win such

a prestigious award, the real reward is the

attention that comes with it for the actual

website. I’d like you to take 5 minutes and

have a look at the website (http://www.

first8.org/first8.html) and think about

your responsibility to make this world a

better place.

14 • MXDJ.COM 3 • 2005

n Part One (MXDJ, vol. 3 issue 2) we

looked at one of three different ways

to consume a Web service, here we

look at two other ways and some of the

pros and cons of each approach.

 In this next example we’ll explore

using data binding in a different way

from Pt. 1, by not relying on the Bindings

tab of the Component Inspector panel.

Instead, we’ll create the bindings through

ActionScript.

Example 2 - Creating
Bindings Through
ActionScript
 To work through this example, we’ll

build the interface the exact same way

as the previous example, leaving out the

“add binding” steps. Either rebuild the

interface following the previous instruc-

tions or take your complete Example 1

from Pt. 1 and simply remove the bind-

ings on the components (by clicking the

minus icon in the Binding tab).

 Before we get to the ActionScript that

needs to be written on the actions layer,

first we’ll examine the two classes that

make data binding possible. Flash MX

2004 Professional includes the mx.data.

binding.Binding class that does all of

the heavy lifting. It uses a helper class

mx.data.binding.EndPoint that is used to

define the source and destination for the

binding bridge.

 The Binding constructor takes a

source EndPoint that supplies the prop-

erty to be bound, and a destination

EndPoint that determines where that

property is transferred to. Optionally, we

can assign a formatter to transform the

property from the source before it arrives

at the destination. We can also optionally

specify the binding as being two-way.

Formatters and two way bindings are

left as exploration pieces – discovery is a

great learning mechanism.

 An EndPoint is an object consisting

of three main properties: component,

property, and event. The “component”

property of an EndPoint instance is a

reference to the component the binding

applies to, and the “property” property is

a string defining what property is being

bound or bound to. The “event” property

is usually only necessary for “source”

EndPoints, and is typically set to either

“change” or “result.” The “event” property

can either be a single event as a string, or

an array of events if multiple events are

required.

 Creating a new Binding instance

and passing it a source and destination

EndPoint is enough to get binding to

work. Use the following two code blocks

on the “actions” layer of the movie to

hook up the data binding through script.

import mx.data.binding.Binding;

import mx.data.binding.EndPoint;

// bind the msg_ta text area to

 the msg parameter of the web

 service connector

var src = new EndPoint();

src.component = msg_ta;

src.property = “text”;

src.event = “change”; // event is

 either a single event string,

 or an array of event strings

var dest = new EndPoint();

dest.component = msg2morse_wsc;

dest.property = “params”;

dest.location = [“msg”]; // this binds

 to params.msg

// creating the binding is as simple

 as this:

new Binding(src, dest);

 Alternatively, we can pass anony-

mous objects to the Binding constructor,

bypassing the need for the EndPoint

helper class. This makes for more com-

pact code, although its readability can

be argued to be either better or worse

depending on your point of view.

// bind the result of the msg2morse_

 wsc to the text of the morse_ta

new Binding({component:msg2morse_wsc,

 property:”results”, event:

 [“result”]},

 {component:morse_ta,

 property:”text”});

// bind morse_ta text to the msg

 parameter of the morse2msg_wsc

new Binding({component:morse_ta,

 property:”text”, event:[“change”]},

 {component:morse2msg_

 wsc, property:”params”,

 location:[“Morse”]});

// bind the result of the morse2msg_

 wsc to the text of the msg_ta

new Binding({component:morse2msg_wsc,

 property:”results”,

 event:[“result”]},

 {component:msg_ta,

 property:”text”});

// wire the buttons

msg2morse_btn.onRelease = function() {

 msg2morse_wsc.trigger();

}

morse2msg_btn.onRelease = function() {

 morse2msg_wsc.trigger();

}

 In the first portion of the code, notice

that we explicitly create an EndPoint for

both the source and the destination. In

the remaining code things are done a lit-

tle different because using the EndPoint

helper class is not a requirement. Rather,

as long as we pass an object with the

appropriate properties, the Binding

class still functions correctly. With this in

mind, we leverage anonymous objects

to define the source and destination for

the binding. Doing so makes the code

more concise though it may or may not

binding

Flash, Web Services, and
Data Binding

Part 2 - Using data binding through code
by darron schall

i

16 • MXDJ.COM 3 • 2005

increase readability as that is a matter of

personal opinion.

 The only other interesting thing to

note in the code is the additional use of

the “location” property. If the “property”

property of the component is complex

(that is, not a simple value like 1 or

“hello”), the “location” property points to

the data field in the complex “property”

object. In the example, the “param” prop-

erty of the web service connector is an

object and therefore complex, so we use

“msg” as the “location” property in order

for the Binding class to find the param.

msg data field correctly.

 Now, again, test the movie and see

the magic. We’ve achieved the exact

same results but instead of the “jungle

code” approach of the Bindings tab,

we’ve consolidated all of the bind-

ing code in one location. This makes

the “magic” aspect a little bit more

obvious, and should allow for easier

updates in the future. Having a single

location to look for certain information

is a boon.

 Like Example 1 in Pt 1, however,

Example 2 is has a dark side as well.

There’s still a “magic” factor surround-

ing the web service connector supplied

by Macromedia, and data binding adds

a lot of unnecessary overhead behind

the scenes. The former may not be that

much of a concern, but if performance is

paramount than the use of data binding

needs to be reevaluated.

 “But Darron, this article is about data

binding, and now you’re telling us not to

use it?” Correct, sort of. Data binding has

its place, but here’s what you probably

didn’t know: every time you type a letter

into the message area, a “change” event

is generated because the “text” property

has been changed; because of this, the

glue that is data binding will update the

parameter of the web service connector

to be the text contained in the text field

to keep them in sync.

 While this doesn’t sound like that big

of a deal, consider the following scenario.

Imagine typing the simple 4 letter word

“test.” In doing so, we’ve generated 4

change events, and set the “msg” parame-

ter of the web service connector to be “t,”

“te,” “tes,” and finally “test.” What a waste of

time! In our case, we only care what the

value of the text is when we invoke the

web service because that is the only time

the value is actually used. Instead of 4

calls, we really only need to make one.

 Imagine, now, typing the above para-

graph into the message area. Around 400

change events would have been gener-

ated, results in over 400 separate assign-

ments, when, as previously stated, only

one is required. Not just assignments,

either. Don’t forget about the overhead

behind the scenes in dispatching and

handling those change events. This

wasteful aspect of data binding can be a

major thorn in the side, especially when

performance is on the line on slower cli-

ent machines.

 In reality, the wastefulness may not

have a profound impact on your appli-

cation. You may find that the benefits

of binding outweigh the cost of using

it. However, for those that want a more

streamlined approach (sans data binding

and web service connector “magic”), one

final example needs to be gone through.

Example 3 - Not Using the
Web Service Connector
or Data Binding
 In this last example we’ll explore

building the same application but with-

out any relying on the web service con-

nector and without the aid of data bind-

ing. This is somewhat of a code purist

approach and is for those who like being

closer to the underlying code.

 For this example, start with a blank

document and construct the interface

almost exactly the same as before. Create

two text areas and two buttons on an

“interface” layer, give the components

the appropriate instance names (msg_ta,

morse_ta, msg2morse_btn, morse2msg_

btn), and position and size them on the

stage accordingly. Leave out the web

service connectors since this example

doesn’t use them.

 This next step is very important. By

default, the classes needed to access

web services are not included in all .swf

files. In order to include these classes and

leverage their functionality, we need to

add them in the following manner.

 From the menu bar, select Window

-> Other Panels -> Common Libraries ->

Classes. Drag the “WebServiceClasses”

from the library that opens up onto the

stage of your Flash document. Finally,

delete the instance on the Stage that you

just created. What just happened was that

we added the web service classes to the

library of our new movie, and by default

they will now be included in our published

.swf. At this point we can leverage the web

service functionality through code.

“There’s still a 'magic'
factor surrounding the
web service
connector supplied by
Macromedia, and data
binding adds a lot of
unnecessary overhead
behind the scenes.”

3 • 2005 MXDJ.COM • 17

All that’s left to do is put the following

code on the “action” layer:

import mx.services.WebService;

import mx.services.PendingCall;

var morse_ws:WebService = new

 WebService(“http://web221.

 area-18.server-home.net/Morse.

 asmx?WSDL”);

msg2morse_btn.onRelease = function() {

 // calling a web service method

 returns a PendingCall

var pc:PendingCall = morse_

 ws.MsgtoMorse(msg_ta.text);

 pc.onResult = function(result) {

 morse_ta.text = result;

 }

 pc.onFault = function(fault) {

 trace(“msg2morse fault: “ + fault.

 faultString);

 }

}

morse2msg_btn.onRelease = function() {

 var pc:PendingCall = morse_

 ws.MorsetoMsg(morse_ta.text);

 pc.onResult = function(result) {

 msg_ta.text = result;

 }

 pc.onFault = function(fault) {

 trace(“morse2msg fault: “ + fault.

 faultString);

 }

}

 In the code above we create a refer-

ence to the web service by passing in

the WSDL location to the WebService

constructor. Then, whenever a button is

pressed we call the appropriate method

and save a reference to the PendingCall

instance it creates. Finally, the “pc” has

two special methods that get invoked

when either the results come back suc-

cessfully (calling “onResult”) or when an

error occurs (calling “onFault”).

Summary and Final
Thoughts
 As you can see, there is more than

one way to accomplish a task. We’ve built

the same application in three distinct

ways, each with their pros and cons.

 The first example requires the least

amount of code. Data binding is lever-

aged through the Bindings tab in the

Component Inspector panel, and two

WebServiceConnectors control access to

the remote web service.

 The second example improves upon

the first by placing all of the Data Binding

code in a single location, but has the

negative side effect of requiring more

“hand coding.”

 The last example is the “down and

dirty” approach that uses the WebService

and PendingCall classes directly without

the need for the WebServiceConnector,

and rids us of the wasteful aspect of

using data binding.

 Each example can be the “right” way

to code something, depending on the

application requirements and the person

doing the coding. I’m a fan of the last

example, but you’re welcome to disagree.

 From here, I encourage you to explore

the further reading links. Find a web ser-

vice that interests you and try building a

small application that uses it. Who knows,

you might even surprise yourself!

Further Reading
• XMethods - Web Service Directory: http:

www.xmethods.com/

• RemoteMethods - Web Service Directory:

http://www.remotemethods.com

• Flash Developer Center: Web Services

Articles: http://www.macromedia.com/

devnet/mx/flash/webservices.html

• Using the Flash MX 2004 web service class-

es: http://www.flash-db.com/services/

tutorials/mxclasses/mxwebservices.php

• Consuming Web services in Flash MX:

http://uk.builder.com/architecture/

web/0,39026570,20282917,00.htm

• Understanding Web Services: A List

Apart: http://www.alistapart.com/arti-

cles/webservices/

• Web Services - An Executive Summary:

http://webservices.xml.com/pub/a/

ws/2002/04/12/execreport.html

• Flash TechNote - External data not acces-

sible outside a Macromedia Flash movie’s

domain: http://www.macromedia.

com/cfusion/knowledgebase/index.

cfn?id=tn_14213

Darron Schall is an application devel-

oper interested in all things program-

ming, from ActionScript to XML and

everything in between. He has a BS

in Computer Science from Lehigh

University, and maintains a Flash-

related weblog at www.darronschall.com.

SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales & Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Advertising Sales & Marketing Manager
Dennis Leavey, 201 802-3023
dennis@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com
Dorothy Gil, 201 802-3024
dorothy@sys-con.com
Kim Hughes, 201 802-3025
kim@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Richard Silverberg, 201 802-3036
richards@sys-con.com
Assistant Art Directors
Tami Beatty, 201 802-3038
tami@sys-con.com
Andrea Boden, 201 802-3034
andrea@sys-con.com

SYS-CON.COM
Consultant, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Matthew Pollotta, 201 802-3054
matthew@sys-con.com
Online Editor
Martin Wezdecki 201 802-3045
martin@sys-con.com

ACCOUNTING-
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com
Accounts Receivable
Gail Naples, 201 802-3062
gailn@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com
National Sales Manager
Jim Hanchrow, 201 802-3066
jimh@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
Monique Floyd, 201 802-3082
monique@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

18 • MXDJ.COM 3 • 2005

With increasing frequency, employees (called “crewmem-

bers”) at JetBlue Airways are being asked to fulfill some

of their training requirements online. The aviation industry

is policy-intensive, and airline employees – everyone from

flight attendants, to pilots, to customer service and ground

crew personnel – are required to update their training each

year on certain regulatory topics. To meet these require-

ments, JetBlue employs a blend of classroom instruction,

on-the-job training, and eLearning.

with captivate & flash

 the skies...
take to

JetBlue uses MX for online training of its crewmembers

by laura sehdeva & chip moeser

20 • MXDJ.COM 3 • 2005

With increasing frequency, employees (called “crewmem-

bers”) at JetBlue Airways are being asked to fulfill some

of their training requirements online. The aviation industry

is policy-intensive, and airline employees – everyone from

flight attendants, to pilots, to customer service and ground

crew personnel – are required to update their training each

year on certain regulatory topics. To meet these require-

ments, JetBlue employs a blend of classroom instruction,

on-the-job training, and eLearning.

with captivate & flash

 the skies...
take to

JetBlue uses MX for online training of its crewmembers

by laura sehdeva & chip moeser

3 • 2005 MXDJ.COM • 21

 eLearning fits into the overall training

strategy at JetBlue for a number of rea-

sons. First, tracking of course completion

and online exams aids in the accuracy

and efficiency of training records, which

are required and periodically requested

by the Federal Aviation Administration

(FAA). Second, as JetBlue continues

to grow, eLearning will help the com-

pany scale its training to reach a rapidly

expanding and geographically diverse

group of crewmembers. For this low-cost,

high-service airline, eLearning is a cost-

effective solution that will help standard-

ize the quality and content of training

across the company. Third, the interac-

tive potential of eLearning supports the

overall training goals at JetBlue, which

are not just to force the memorization of

knowledge, but to prepare crewmem-

bers to more effectively implement their

knowledge in the workplace.

 Flash MX, Dreamweaver, and

Captivate are key tools for the devel-

opment and delivery of eLearning

at JetBlue. All eLearning courses are

accessed via an XML/Flash-based inter-

face that serves as a shell for course con-

tent and also tracks usage. The content

of the courses themselves is multimedia,

consisting of text, images, video, Flash

interactions, and demos and exercises

built in Captivate. Flash is an ideal tool

for pulling together these various types

of media as it allows learners to access

course content with a single plug-in that

is standard on all JetBlue computers. As

an authoring tool, Flash has advantages

as well. Both the skills required to use

it and the content produced by it are

portable, rather than being specific to a

particular learning management system

(LMS) or LCMS.

Flash/XML eLearning
Interface
 The main interface for eLearning

courses at JetBlue is a Flash application

that pulls data from XML files. Multiple

factors contributed to the decision to

use a Flash/XML-based interface. Most

important, the Flash/XML interface

allows interactive developers to keep

the course content separate from the

Flash application. Any Flash developer

working in eLearning knows how often

course content can change. The desire to

allow instructional designers and/or sub-

ject matter experts to make changes to

their own content was the driving factor

behind the decision to use a Flash/XML-

based solution for the interface. A care-

fully planned directory structure was cre-

ated that keeps the content, Flash files,

and ActionScript class files and their child

items all separate. This allows updates

to course content without affecting the

Flash file itself. Since the Flash file does

not need to be updated to make content

changes, instructional designers and

subject matter experts can make these

changes in any text editor without any

knowledge of Flash or involvement by

the interactive developer. Another factor

in our decision to use XML was the move

toward SCORM standards in the eLearn-

ing community. Since SCORM uses XML,

it made sense to move development in

that direction. In addition, a Flash/XML-

based interface was appropriate because

there is a high likelihood that JetBlue

will eventually use web services to have

eLearning course content communicate

with an LMS.

 The initial look and feel of this

user interface (UI) was designed with

Macromedia Fireworks. Fireworks is a use-

ful, often overlooked tool for user inter-

face development. Multiple layouts are

easily mocked up, and the design team

can discuss and decide which elements

work best before any Flash development

begins. Fireworks enables pixel-precise

22 • MXDJ.COM 3 • 2005

planning of all graphical elements in the

interface. When drawing the vector art

in Flash, the exact sizes and positions of

all elements can be taken directly from

the Fireworks file. Non-vector graphics

such as logos can be directly exported

from the initial layout. This makes Flash

development much more efficient and

reduces the risk of unforeseen UI issues.

 The interface is made up of several

separate Flash files. The main Flash file

contains most of the static graphical

elements and handles the loading and

management of all child SWFs. Module

navigation is handled by a separate Flash

file. The navigation file loads an XML file

with all of the module navigation infor-

mation. This Flash file is comprised of

two different navigation features. “First,”

“Next,” and “Previous” buttons allow the

student to move sequentially through

the module one page at a time. Also

included in the navigation file is a button

that opens a module map. The module

map allows students to navigate to any

point within the module using a tree

menu. Separate Flash files are also used

for “Help” and “Glossary” sections, which

are also XML-driven, and are loaded in by

the main Flash file. The Flash files have

very little, if any, ActionScript contained

in the movies. Most programming is kept

separate in external .as class files. This

makes changes in functionality much

easier by reducing the need to track code

through multiple movie clips and layers.

 The content for the course is cur-

rently HTML pages, which are displayed

in a parent HTML page that incorporates

the content and Flash interface using an

inline frame. Dreamweaver MX is used

to edit the HTML pages. Development is

underway to do away with the content

HTML pages and eventually have all

content stored in XML files. Other plans

include support for SCORM sequencing,

enhanced assessments, and the ability to

deliver performance-driven learning.

Flash as an Authoring Tool
 Prior to using Flash and Dreamweaver

as authoring tools, the JetBlue eLearning

design team tried several proprietary

authoring tools associated with par-

ticular learning management systems.

Ultimately, Flash (and Dreamweaver as

an intermediate solution) won out. Still

in the process of testing and select-

3 • 2005 MXDJ.COM • 23

ing a learning management system,

JetBlue needed content that could be

moved easily from one LMS to another.

Furthermore, the design team found

that proprietary tools tended to be

imprecise in their generation of code,

and to be difficult to use or have a steep

learning curve. As the team expanded,

the ability to hire people with skills in a

particular authoring tool, such as Flash/

Actionscript, was beneficial.

 Although the pages of course content

are still HTML-based, the integration of

Flash movies has helped JetBlue to move

beyond the exclusive use of static text

and images to more interactive eLearn-

ing. This has enormous instructional

benefit, both because online learners are

infamous for ignoring most of the static

text they see on a screen, and because

interactivity allows us to simulate the

situations in which learners may actually

encounter the material. For example, we

can show baggage on a belt loader and

ask the learner to click on those items

that would require special attention and

drag them off of the belt. This simulates

the real situation in which the crewmem-

ber would physically pull the bags off the

belt loader.

 In creating content for the eLearning

courses, the design team makes frequent

use of the “Quiz” template that is pack-

aged with Flash MX Professional. JetBlue

has further customized this template to

create a standard look and feel for drag

and drop exercises and for “hotspots” (in

which the learner must click on the cor-

rect part of the screen in order to receive

feedback for a correct answer). This quiz

template is convenient and easily cus-

tomized.

Flash Video
 At JetBlue, Flash is used with video

both for eLearning courses and to add

transitions to longer standalone vid-

eos distributed via DVD. For eLearning

courses, short video clips are often used

to illustrate a procedure such as opening

an aircraft door. For these we use Flash

video with progressive download. The

interface for our courses is built in Flash

7, and the Flash 7 player is standard on

all JetBlue machines; therefore, the use

of Flash video does not require an addi-

tional plug-in. This solution is limited to

short video clips, as longer clips will not

stay in sync – a disadvantage of Flash

progressive download.

 JetBlue also produces longer videos

such as videos of speakers’ presenta-

tions. These are currently distributed

both on DVDs and via the Intranet, using

Windows Media Player. The purchasing of

a Flash Communication Server has been

investigated; however, the cost, as well

as the limited number of simultaneous

users, seems prohibitive. Outsourcing

the hosting of our longer Flash videos

remains an option. An advantage of

the Flash Communication Server for

eLearning courses would be the hous-

ing of all the video on the server, rather

than within the courses themselves. This

would facilitate modular use (video clips

could be used in multiple courses) and

revisions.

 Besides the costs of the Flash

Communication Server, there are other

challenges with using Flash for longer

videos. While other formats, such as

Windows Media, avi, and mov, can be

played on either DVD or Web, Flash is

intended for Web playback. If a video

were to be distributed both online and

via DVD, two versions would have to be

created. An additional challenge is that

Adobe Premier, which we use for video

editing, does not have direct output to

Flash.

 In longer videos, Flash serves as a

quicker, simpler substitute for Aftereffects

for inserting transitions. It also enables

the integration of Flash animations

with the video and shows promise for

advanced techniques, such as interactive

video that allows the user to choose the

camera angle on, for example, a piece of

technical equipment. In some cases, how-

ever, it is necessary to compensate for

the difference in pixel size when building

Flash animations or transitions to be dis-

played on a TV screen.

Using Captivate for
Software Training
 Captivate is a promising tool for cre-

ating simulations to train crewmembers

on software applications. Currently two

Captivate-based training projects for

JetBlue reservation agents are in the

works – one for our new reservations

system, and one for Blue Pumpkin, the

software used by reservation agents to

bid for work shifts. This training will be

delivered via computer in learning labs

or available to crewmembers at home.

Captivate simulations will be exported

as SWFs and placed into HTML pages,

potentially using our existing Flash inter-

face.

Summary
 The eLearning strategy at JetBlue is

still evolving. In the past year, we have

upgraded from RoboDemo to Captivate,

built the entire Flash/XML-based eLearn-

ing interface, and begun the transition

from HTML-based authoring to XML/

Flash-based authoring. We continue to

strive for the best possible use of tech-

nology to meet JetBlue’s learning needs

and search for new technologies that will

make training more effective and effi-

cient.

Laura Sehdeva and Chip Moeser work

in JetBlue University, JetBlue’s corpo-

rate training department, where they

use Macromedia products, specifically

Captivate and Flash, for training purposes.

JetBlue University recently built a Flash/

XML-based eLearning interface, through

which all of its eLearning courses are

being delivered.

laura.sehdeva@jetblue.com

“Flash MX,
Dreamweaver,
and Captivate

are key tools
for the

development
and delivery of

eLearning at
JetBlue”

24 • MXDJ.COM 3 • 2005

aptivate came along at a time

when I was in a ‘tight spot’ as

a web developer.

Imagine the words ‘tight spot’

said with all the ironic fret of George

Clooney as Ulysses Everett McGill in

the film ‘O Brother, Where Art Thou?’

and you will begin to identify with my

situation.

It was April 2003. I had just been

hired as a contract Web Based Training

(WBT) developer by Children’s Hospital

Seattle. The task before me was to head

up all technical development for the

first robust WBT developed within the

organization.

We were charged with creat-

ing an eLearning system to train all

of Children’s staff on a new medical

orders system that was set to go live

in November 2003. This new orders

process was the biggest phase in a long

term project of modernizing the way

the hospital managed patient informa-

tion.

Gone would be the clichéd days of

unreadable prescriptions written in har-

ried doctor’s handwriting. Instead, all

orders would be entered online into a

new system where staff could interact

with them collaboratively throughout

the organization.

This is a case study of how Captivate

has played into this WBT project at

Children’s and how we use this soft-

ware in our ongoing eLearning prod-

ucts. If you are like me, how-to demos

are valuable, but there’s nothing like

an in-the-trenches case study to help

separate the deliverable wheat from

the bandwagon chaff.

Now to move on to a few more

details about this particular project.

Why an eLearning System?
Why Custom?

As a 24/7 teaching hospital with

over 3900 employees, 250 beds, and a

constant influx of new staff and medi-

cal students, we had a lot of training

to do.

Buying packaged eLearning soft-

ware from the system vendor wasn’t a

viable option. Pediatric hospitals are

very specialized organizations. Our

medical orders system would be a very

customized beast – quite different to

the version our vendor implemented at

regular hospitals.

Imagine the differences between a

critical medication order for a two-week

old baby and a 17-year old teenager

and you begin to understand the com-

plexity of a pediatric implementation of

this kind of system.

Another driving force was the fact

that using the medical orders system

correctly was a huge patient safety

gain – and simultaneously a risk. When

incorrect use of a system can kill

people, you tend to be very serious

about certifying that everyone using it

has demonstrated correct completion

of the system tasks that are a part of

their job.

With these requirements in mind,

we began assessing what we had to

build upon and what we’d need to

develop ourselves.

Let’s Make a WBT System!
Say ‘Let’s make a system!’ with all

the flair of a game show host saying

‘Let’s make a deal’ and you will find

yourself right alongside me during the

first few weeks of the project.

Out of the gate, it was clear that

there was no user tracking system in

place that we could use to authen-

ticate learners, track their progress,

and report their results. In eLearning

speak, these beasts are called Learning

Management Systems (LMS). We put

one LMS on the to-do list.

Another requirement was that

learners would only see lessons that

apply to the job they performed in the

hospital. Doctors would see doctor les-

sons. Nurses would see nurse lessons,

and so on. Now we were in the terri-

tory of a content management system

(CMS). We added an integrated CMS to

our list.

There was no user interface for the

learner to navigate all of the lessons

they needed to complete. We added

the task of designing and programming

a nice looking and easy to use web

application shell to that list.

If you haven’t noticed, our to-do list

was getting pretty beefy. We haven’t

even gotten to developing the actual

content yet, and the seven months

between April and November 2003 is

looking like an absurdly short amount

of time.

Content Is Where Captivate
Comes In

The last stage of assessment

involved determining what process

and tools we were going to use to

build and deliver the content. We had

to make quick, intelligent decisions on

which web based eLearning delivery

technology and tools to use. Would it

be DHTML? Authorware? Flash? Other

tools and technologies entirely?

We had 45 lessons that needed to

move quickly through the storyboard-

ing, editing, and finalization of the con-

tent phase and then on through techni-

cal production into deployment.

This is when I first came across

Captivate (then known as RoboDemo)

and it looked pretty good. It seemed

a bit more robust than some com-

parative tools in the same price range

(like ViewletBuilder or Camtasia) and

was pretty user friendly. We definitely

needed a tool that was easy for our

case study

Between a Rock
and a Soft(ware) Place

 Streamlining Web-based training development with Captivate & Flash
by bryan zug

c

28 • MXDJ.COM 3 • 2005

non-technical Subject Matter Experts

(SMEs) to use. They had to have some-

thing where they could rapidly capture

screenshots and prototype lessons.

Our SMEs in particular were nurses

who had never done any kind of multi-

media, software, or WBT development.

Getting an easy to use tool where they

could storyboard their lessons out

quickly and easily was going to be para-

mount to the success of the project.

Whichever reasonably priced tool could

offer more production advantages

beyond these basics would be a serious

contender.

This is when I got wind of a coming

enhancement that nearly made our

decision for us.

.FLAs Directly from
Nurses’ Storyboards,
Developers Weep for Joy

In June 2003, a new feature was

released that allowed the exporting of

Captivate files as fully editable Flash

authoring FLAs.

There haven’t been many times

in my professional career that I can

remember my exact reaction upon

hearing ‘such and such’ news, but I

burst into tears of joy when I read that

announcement.

Yes, real developers do cry.

Here I was in my ‘tight spot’ trying to

balance all the competing tasks of the

project. I was looking for as much lever-

age as possible because we would not

make our deadline without it. So much

was not yet designed and was still

unknown that we absolutely needed

the most robust, scalable, and flexible

technology to build our system.

Flash was robust enough to handle

all the requirements of the client side

of the application, but, as anyone who’s

built a robust Flash app will tell you, it

takes a lot of work. You are not a junior

college ‘design hipster’ cranking out

‘bleeding edge’ splash screens. You

are building software – a Rich Internet

Application (as many folks refer to

them), and it is hard work.

We tested the export to FLA fea-

ture the day it was released and it did

exactly what we needed – exporting all

of the assets of the Captivate movies in

an organized FLA.

This gave us the robust path we

needed to rapidly prototype and build

the content for our WBT – one that

could quickly adapt to emerging system

needs. I will touch on some real-world,

saved-my-BLEEP, examples of this in a

bit.

One important thing to note that

we discovered in how this feature

works is that exporting an .FLA requires

that the Flash authoring environment

be installed on the same machine as

Captivate.

In that, it is not so much an export

.FLA feature as it was an import

Captivate to Flash MX (and later Flash

MX 2004) feature. This is an important

distinction that has been confusing to

many since its debut. Misunderstanding

what that means is a $500 difference if

you need the supplemental software

the function requires.

Our Production Process
So we adopted Captivate as our

content capturing and design tool of

choice, with Flash as our delivery tech-

nology for the client shell and the les-

sons. The production process we setup

for the initial 2003 project looks very

much the same today as it did then.

It would be really romantic to tell

you that we use all of Captivate’s great

features (like AICC/SCORM compliant

output or easily crafted audio narra-

tion), but we don’t. In a nutshell we

take the raw Captivate .FLAs and hand

copy the backgrounds and captions

from them and into the custom .FLA

lesson template. This file houses all of

the code required to track and man-

age everything in conjunction with our

homegrown LMS.

Not very sexy, I know, but it makes

good business sense. We are now at the

point where we’ve been able to auto-

mate nearly all of our technical FLA pro-

duction via the creation of custom cap-

tions in Captivate and the use of Flash

MX 2004 JSFL scripted commands.

In all, it takes us less than 1.25 hours

of technical production to create and

deploy a 20 interaction lesson – and it’s

getting shorter all the time. This is for a

template that includes the interaction

and a demonstration of the task if the

learner makes two incorrect attempts.

Happy We Chose Captivate
In all likelihood, we would not have

met our initial 2003 deliverables with-

out Captivate. We needed something

that was inexpensive, easy to use for

“When incorrect use of
a system can kill people,
you tend to be very
serious about certifying
that everyone using it
has demonstrated
correct completion of
the system tasks that
are a part of their job”

3 • 2005 MXDJ.COM • 29

non-technical folks, and robust enough

to leverage into the land of enter-

prise web application development.

Captivate hit this sweet spot for us and

continues to do so today. We’ve been

through three versions of the software

(RoboDemo 4.0 and 5.0, Captivate 1.0)

and the current implementation is

so much more robust than when we

began using it.

Captivate 1.0’s productivity

enhancements continue to reduce turn-

around times for our content. Notable

timesavers for us have been: 1) Snap

capture window to an open applica-

tion, 2) recording defaults for caption

styles that automatically set all captions

to our design style guide during the

capture process, and 3) visual timeline

editing for each slide.

Captivate also continues to lead

functionality wise for its price point.

Cost of the next level tools is around

$10,000. Knowledge Planet’s Firefly

(http://www.knowledgeplanet.com) or

Epiance’s Epiplex (http://www.epiance.

com) deliver more functionality, but

they do so at a steep price difference.

Captivate’s Leverage
Toward Flash FLAs Has
Paid Off

Captivate’s foot in the door toward

Flash FLA development has also deliv-

ered big payoffs. Here are three of the

real-world implications of Flash FLA

development that have saved us from

disaster:

Wider adoption means more

developers…

Given the growing weight of the

developer community behind Flash, it

is easier to find developers for it than

for many of the other less popular

eLearning tools in circulation. In July

2003, when we needed an extra Flash

developer to come in who was very

code-centric, we had one within a few

days.

Wider adoption also means more

supplemental software…

In August 2004, when Microsoft qui-

etly killed Internet Explorer’s full screen

chromeless window display mode with

their Windows XP Service Pack 2 and

effectively broke our WBT, we had third

party vendors like Multidmedia (http://

www.multidmedia.com) we could turn

to for help.

They provided alternate fullscreen

standalone projectors that would sup-

port seamless right click interactions

in Flash – something that we had

been mitigating with Internet Explorer

dependent DHTML hacks since launch-

ing our initial WBT in 2003.

A mature IDE means more

leverage…

The automation of the Flash MX

2004 IDE with JSFL is a dream come

true for those of us faced with repeti-

tive coding tasks that require just

enough customization that they cannot

be fully automated very easily. It’s very

satisfying to go to my command menu

in Flash, click my “Text Entry” demo

command, and watch it do 97% of the

work for me.

The Last Word
Bottom-line – Flash as a technology

and delivery platform is robust enough

to quickly develop for and adapt to

changing enterprise needs. When folks

from elsewhere in the enterprise tell

you they are about to make changes

that will break your application, it’s

nice to have a robust enough technol-

ogy that you can adapt in a reasonably

short amount of time.

Having a tool like Captivate that

strongly leverages content toward Flash

FLA development for our WBTs enabled

us to deliver the requested functional-

ity. My clients are always much happier

when my tools and technologies allow

me to say “yes” when they ask “Can we

do that?”

Bryan Zug joined Children’s Hospital of

Seattle in April 2003 to develop their

first enterprise-wide web based train-

ing (WBT) products. The resulting web

application is a combination of Flash,

ASP, and SQL-Server technologies that

serve as the key elements for training

the hospital’s 2500+ clinical staff on a

new medication ordering system intro-

duced in November 2003. Working as

a web and multimedia developer since

1996, Bryan’s projects have included

WBT, e-commerce, content manage-

ment systems, and user interface design

for clients that include Bermuda Fire &

Marine Insurance, Volkswagen/Audi of

Latin America, Premera Blue Cross, and

Perkins Coie law firm, among others. He

has also performed quality assurance

systems analysis for Real Networks

and associated client partners such as

CNN, ABCnews, CBS, FoxSports, Major

League Baseball, NASCAR, and E!.

bryan.zug@seattlechildrens.org

“We adopted Captivate as our
content capturing and design
tool of choice, with Flash as
our delivery technology for the
client shell and the lessons”

30 • MXDJ.COM 3 • 2005

hat do “fantastic,” “fabulous,”

and “fun” have in common?

All three of these words

describe the creative work you can do

with Flash, Fireworks, and FreeHand. The

Macromedia MX2004 Studio “Fab Three”

together give you the tools to create art

and animations for the web and other

media. Combine these with Dreamweaver

and you have a dynamic set of tools.

 Did you know that all three – Flash,

Fireworks, and FreeHand – can create

animations? Of course, Flash is the most

well known and the most powerful tool for

web animations. Fireworks and FreeHand

can create the graphics for simple anima-

tions to use in Flash and export in the SWF

format. Fireworks is quite unique because

it can create graphics, open and import

vector art from FreeHand, create animated

GIFs, and open animated GIFs created in

other applications for enhancing.

 Why would you want to create an

animated GIF when it is an old technology

dating back to the late 1980s? Answer:

because an animated GIF might just be the

perfect solution to fit a particular client’s

needs.

 What is an animated GIF and what

are the advantages or disadvantages? An

animated GIF contains multiple images

encoded in one single file. The advantages

are: browser support without any addi-

tional plug-in or players, transparency, and

a good choice for very simple animations.

Some of the disadvantages are: 256 colors,

a large file size, and that an animated GIF is

limited to simple animations.

 Why would you choose Fireworks to

create your animated GIF? Fireworks’ ability

to create artwork, superior GIF optimiza-

tion, and the use of layers and frames allow

you to make a simple animation with a

minimum number of steps. Add, to this, the

compatibility with the vector illustration

power of FreeHand and you have a win-

ning combination.

 What are the general steps to cre-

ate an animated GIF with Fireworks and

FreeHand?

• Create the artwork in FreeHand,

Fireworks, or a combination of both.

• Use the features in both products that

distribute objects to layers and frames.

• Set the frame rate and how many times

the animation will play.

• Optimize to reduce file size.

• Export as an animated GIF.

Animated GIF Example
 What is a specific example of an

animated GIF and what are a few of the

important steps to make one? The example

for this article is a simple animation to pro-

mote a fictitious Flower and Garden show

on a web site.

 The animation is on the first page of the

promotion and on each subsequent web

page there would be a still graphic with

one of the floral images. The animation will

be a simple stylized flower with the petals

dropping off one by one to reveal theme-

related pictures with a hand-painted look

(see Figures 1 and 2). The purpose of the

example presented in this article is to serve

as a starting point and to help generate

ideas that you can use to create one of your

own GIF animations. It is only one method

to create the animation. There are many

different ways of achieving the same end

result.

Artwork in FreeHand

 FreeHand is used in the example to

develop the artwork to take advantage of

the power duplicating feature to create

the flower, to use the color tracing feature

to create the hand-painted look for the

photographs, to attach text to a spiral path,

to use the release to layers to separate each

object on a layer, and the compatibility

with Fireworks. Note: You can also use

Fireworks to create the artwork and use the

distribute layers to frames feature.

1. In the FreeHand document set the unit

of measurement to pixels and set the

document size to custom. Type in the

pixel size width and height for your ani-

mation. For example 200 x 200.

2. Create one petal shape using the Pen

tool or modify a circle. Add a small circle

to use as the center of rotation for the

animation

Fireworks-Animated GIF
with FreeHand Vector Art

It's fantastic, fabulous, and fun
by joanne watkins

w

fi
g

u
re

 1

fi
g

u
re

 2

fi
g

u
re

 3

32 • MXDJ.COM 3 • 2005

flower petals.

3. Rotate the petal shape as necessary and

place in position close to the circle.

For this example, you will want to place

the first petal where you want the

animation to begin. Place the petal at

the top for the animation to start at the

top and go in a clockwise direction (see

Figure 3).

4. Choose Edit > Clone to make an exact

copy of the petal on top of the existing

one.

5. Be sure the clone is selected. Select the

Rotate tool from the Toolbox. Click the

center of the circle to establish the center

of rotation. Press Alt + Shift and drag

the mouse to make a rotated copy con-

strained to and an angle of 45 degrees

(see Figure 4).

6. Choose Edit > Duplicate or use the

keyboard shortcut. Repeat the duplicate

command as many times as necessary to

complete the petals around the circle.

7. Delete the center circle used for the cen-

ter of rotation. Choose Window > Toolbar

> Xtra Tools and select the Spiral Tool.

Make a spiral in the center of the petals.

8. Using the Type tool, type a block of text

and attach it to the path.

9. View the completed steps (see Figure 5).

10. Save two copies of the file using Save

As and a different file name.

 One of the files is used for the anima-

tion so that the flower petals one by one

disappear. The other file is used for the

image you see when the flower petal drops

off. You will want these two files to be an

exact duplicate as the bottom one with

the images will be opened in Fireworks

and shared across layers. The top one will

be imported into the same Fireworks file

converting the layers to frames and will be

positioned exactly on top of the other one

for the animation.

Prepare the FreeHand Art

for Animation

1. In one of the two saved FreeHand files,

delete the center as it will not be ani-

mated.

2. Select all the petals and use the Fill

Bucket on the Toolbox to fill them with

a Hexadecimal color of your choice. The

example uses FFFF00.

3. Select all the petals and group them. It is

important to group the objects in order

to release them to layers.

4. Deselect the group as you will need to

add a duplicate layer.

 In this example, the petals will all be

visible before the animation starts. If you do

not make an extra duplicate layer, FreeHand

will drop the first object on the first layer.

This would show your GIF with one petal

missing before the animation starts.

5. In the Layers Panel select Duplicate.

6. Be sure you are on the duplicate layer

and select the grouped petals.

7. Choose Xtras > Animate > Release to

Layers. Select Drop from the pop-up

menuand check Use Existing Layers.

 The Drop selection for the example

animation copies the objects to one layer

except for one petal and continues to add

as many layers as needed. In the example

there will be eight layers one for each of the

dropped petals and the duplicate with all

the petals for a total of nine layers exclud-

ing the Guides and Background layers(see

Figure 6).

 Although you are going to Fireworks to

make this an animated Gif, you can test the

animation using the SWF test movie feature

in FreeHand (Window > Movie > Test) to

see if the animation is working as expected.

If not, correct any steps before going to

Fireworks.

Prepare the FreeHand Art for the Base

1. Open the other saved FreeHand file. This

is the one with the text spiraled in the

center.

2. Import each prepared photograph that

is already sized to be slightly larger than

the flower petal.

3. Place the photograph on an area of

the pasteboard (blank area outside the

fi
g

u
re

 5

fi
g

u
re

 6

fi
g

u
re

 7
fi

g
u

re
 4

3 • 2005 MXDJ.COM • 33

borders of the document). Previously

to import the photograph at its original

size.

4. Double-click the Trace tool and use set-

tings that will be appropriate for the final

GIF art from Fireworks. For example 256

colors, RGB, High resolution, and Tight

trace conformity.

5. Using the Trace tool, draw a rectangular

marquee around the photograph and

without deselecting, immediately group

the traced image. This is very important

as the new image contains numerous

separate vector paths.

6. To decrease the number of vector paths,

choose Modify > Alter Path > Simplify

and type a number or use the slider. The

number 2 is used for the example.

7. Move the traced art and place on top of one

of the petals. Choose Modify > Arrange >

Bring to Front to make sure the photo art is at

the top of the stacking order (see Figure 7).

8. Cut the image.

9. Select the flower petal and choose Edit >

Paste contents.

 This creates a clipping path. To reposi-

tion the picture inside the petal, select the

petal and in the Object properties select

Contents located below Clipping path. Use

the pointer tool and move the paste con-

tents handle to reposition the picture.

10. Repeat for all the flower petals and

delete the original photographs from the

pasteboard area (see Figure 8).

Fireworks
Open the FreeHand File

1. Launch Fireworks and open the file with

the floral images (see Figure 8). In the

sample figure the canvas is set to white

for illustration purposes only.

2. Leave all the default settings in the

Vector File Options. Be sure that

Remember Layers is selected in the sec-

ond pop-up menu under File conversion.

3. In the Layers, panel collapse the

Foreground layer which contains the

objects from FreeHand.

4. Double-click the layer name and check

Share across frames.

 This will allow the flower with the art

images to be on every frame and visible

when a petal is dropped (see Figure 9).

Import the Second FreeHand File

1. Choose File > Import and locate the

FreeHand file with the animation.

2. In the Vector File Options window, select

convert layers to frames in the second

pop-up menu under File conversions.

Click the Fireworks canvas in the upper

left corner.

3. Open the Frames panel. Set the number

of loop times from the Looping pop-up

menu at the bottom of the Frames panel.

 If you only want the animation to play

once and you want it to end showing all

the yellow petals, duplicate frame one and

select at the end position.

4. Double-click the column containing the

frame rates and set the desired rates (see

Figure 10).

 You can Shift select the Frames to

apply a new rate to all the selected frames

at once. You can also set the looping and

frame rates in the export preview window.

5. Open the Optimize panel. It is extremely

important to select the Animated GIF

option in this panel even though you

might not change

any optimization

settings. Setting the

format here gives

you the multimage

GIF in one file when

you export (see

Figure 11).

6. Click the 2 up or

4 up tab in the

Fireworks window

to preview your different optimization set-

tings to create a smaller file size.

 For further information on optimiza-

tion, please refer to a previous article by

Joyce Evans, “Fireworks Image Optimization

Basics” (MXDJ vol. 2 issue 10).

7. Choose File > Export and you can either

export only the animated GIF or you can

export the image and the HTML page

from Fireworks.

8. Test the animation in the browser.

 The completed animation is now ready

and you have another solution to fit a par-

ticular client’s needs. It is fantastic, fabulous,

and fun to turn your creative ideas into

animations with the “Fab Three”: Fireworks,

FreeHand, and Flash.

Joanne Watkins is a featured an instruc-

tor for Hewlett-Packard’s Online Learning

Center. She is also an Associate Professor

in the Applied Graphic Design Technology

department of Collin Community College

and teaches in the Senior Adult Education

Program of the Business Studies Division

at Brookhaven College in Dallas, Texas.

Previously at Macromedia she served as a

DevNet technical editor, web producer, and

technical support engineer. Joanne was also

the technical editor for nine Macromedia

Press Books about Fireworks and FreeHand.

joannew@imagetechinfo.com

fi
g

u
re

 8

fi
g

u
re

 9

fi
g

u
re

 1
0

fi
g

u
re

 1
1

34 • MXDJ.COM 3 • 2005

Flash Communication Server
 A Model for Dealing with the

by nima azimi

in Director

36 • MXDJ.COM 3 • 2005

Flash Communication Server
 A Model for Dealing with the

by nima azimi

in Director

 We live in a communications world.

The number of software solutions that

can provide communication between

users grows every day. In the future it’s

likely that applications unable to provide

this ability will be known as “traditional

applications,” shunned because of their

lack of openness and communication

ability. A simple example of this can be

seen in the game industry. Gamers are

addicted to multiplayer games with oth-

ers and to the pleasure that such games

bring because of the interactions in the

player-base: without the option of multi-

player mode, Director-based games will

be in the minority.

Fortunately,

Macromedia has

not left developers

alone in this pioneer tech-

nology and has provided

the Flash Communication

Server (the heir of Multi-

User-Server in my view).

Macromedia wants FlashCom

to supersede MUS. So,

although the MUS is powerful

enough to create amazing applica-

tions with Director such as we see on

the web today, following the MX version

of Director, Macromedia suggests using

FlashCom Server instead. FlashCom is

known as a revolution in Macromedia his-

tory and this is mainly because of its inte-

gration across several products. FlashCom

is so “open” that a running joke on a

few of the forums I see has Macromedia

changing its name to the “Macromedia

Communication Server.” What follows is an

example of combining Director and the

FlashCom Server to provide a backbone

for multi-user applications, in a more mod-

ern way than traditional MUS applications.

What Is FlashCom?
 Flash Communication Server is a serv-

er technology that provides the connec-

tions between Flash 6+ players. The Flash

Communication Server is a hub. Users

connect to the hub using Macromedia’s

communication protocol called Real-Time

Messaging Protocol (RTMP). FlashCom

makes it possible to communicate with

other users through Flash files (and, with

some conversions, in Director files) in

web pages or standalone applications. It

does this with several types of commu-

nication streams, such as sending video,

audio, and text between users in real

time. End users experience these applica-

tions as video-audio conferences, chat

rooms, and so on.

 In addition to these types, FlashCom

has a “remote shared object” that is the

heart of its flexibility. It lets us make an

object like a 2D sprite or 3D object exist

in a way that is shared between users so

that they can manipulate its properties

– such as position, rotation, and so on in

real time together. You can think of it as

3D ball in a football game that users can

pass it to each other.

Flash Object in Director
 Director has supported Flash objects

for a number of years, with each ve rsion

of Director supporting the latest avail-

able version of Flash. With this ability we

can work with FlashCom in Director as

a Flash object. We can manipulate and

work with the Flash object in several

ways. We can get or set all variables and

objects in Flash files and access all prop-

erties of those variables and objects. If

you have used FlashCom in Flash before,

you’re familiar with the “Developing

Communication Applications” document

provided by Macromedia (http://www.

macromedia.com/support/flashcom/

documentation.html). In that document

there are six sample projects that illus-

trate the basic capabilities of FlashCom

very smoothly. I think the best solution is

to learn how to use FlashCom in Director

would be to re-code those samples in

Director one by one. Thanks to John

Taylor and Jay Armstrong for their articles

in Macromedia Developer Center, we

have the torch to light the dark road of

starting this kind of implementation.

 But there are several situations in

which the best way to implement these

types of applications in Director is not

immediately apparent. By starting with

simpler, more contained, projects and

gradually growing into more advanced

applications, one can learn FlashCom

more efficiently.

 For this article, I have chosen two sam-

ples from the initial FlashCom documents

that I think have good features and could

be as a guideline for other projects, one

on sharing text between users, and one

on sharing a sprite object. FlashCom appli-

cations generally have a client side-script

written in a .fla file (which we will either

replace or encapsulate inside the .dir) and

may have server-side script written in an

external file in the ActionScript language

with the same name as application name,

or “main” with a “.acs” extension. In this

article I focus on samples that don’t need

any server-side scripting, but if you see

these files in other examples, that is likely

their intended use.

Sample One - (Shared Text)
 The first sample I present is a “Shared

Text” project. The goal of this project is

to have a textbox shared between any

users that visit our Shockwave page. They

could write any message to any other

user. While a user is typing, other users

can see the characters typed one by one.

 The first step is to create the Flash

object. We can do this dynamically with

Lingo or by importing a Flash file into

the cast window. I use this later in the

sample. Since you don’t want to use any

built-in Flash embedded video or pre-

provided FlashCom components in your

project, you don’t need to do anything

in your Flash movie. You need only to

create an empty 10 by 10 pixels Flash

file and publish it to “.swf”. When you

import this .swf file to Director and drag

it to the stage, you have all you need to

work with FlashCom. Keep in mind that

Shockwave file must contain the swf in its

3 • 2005 MXDJ.COM • 37

stage boundaries. You can drag it to the

left down corner of the stage and set the

ink property to “Background Transparent.”

When you publish your project, save your

“.dcr” and “.htm” files to a directory named

“myProjectDirectory” (or anything else

you want) in your FlashCom applications

directory (for example C:\inetpub\www-

root\flashcom\applications\).

TIP: try to write all your FlashCom scripts

and functions in one “behavior script”

and assign it to your flash sprite; then call

those functions from other sprite or frame

“behavior scripts” if needed.

Step #1:
 To provide any FlashCom capability to

your applications you need to establish

a connection to “Flash Communication

Server“. Do this by creating a new

NetConnection object.

 If we were programming in Flash we

would use the line:

client_nc = new NetConnection();

 In Director, we first assign a variable

to our flash sprite and then use this vari-

able to create flash objects and manipu-

late them, like this:

pSprie = sprite(“myFlashSprieName”)

pNetConn = pSprite.newObject

 (“NetConnection”)

Step #2:
 Any NetConnection object has an

“onStatus” event raised when a connection

is established. We use this event to test

our connection status. It has a parameter

defined according to the status message.

The message is stored in the code property

of this parameter. In some situations we can

use it as a guide to alert the user if the con-

nection was a success, closed, failed, reject-

ed, etc. In Flash, this is implemented through

a “function literal” or “anonymous function”

method but we can’t do it in Director.

 In Flash:

client_nc.onStatus = function(info) {

 trace (“Level: ” + info.level +

 “Code: “ + info.code);

 if (info.code = “NetConnection.

 Connect.Success”) {

 // Continue

 }else if (info.code = “NetConnection.

 Connect.Closed”) {

 {

 // Alert Message

 }

};

 We must implement this code in

Director with the help of the setCallBack

command. setCallBack is a Flash command

that can be used as a sprite or a global

method to define a Lingo callback handler

for a particular event generated by the spec-

ified object. When ActionScript triggers the

event in the object, that event is redirected

to the given Lingo handler, including all

arguments that are passed with the event.

 In Director:

pSprite.setCallBack(pNetConn,

 ”onStatus”, #myOnStatus, me)

on myOnStatus (me, this, aInfo)

 put “Level: “ && aInfo.level &&

 “Code:” && aInfo.code

 if (aInfo.code = “NetConnection.

 Connect.Success”) then

 -- Continue

 else

 -- Alert Message

 end if

end

 The parameters of setCallBack are an

Actionscript object (NetConnection), the

Actionscript event that occures (onSta-

tus), the Lingo handler that handles the

Actionscript event (myOnStatus) and

the Lingo object that contains the cor-

responding handler (me). Thus any time

NetConnection tries to connect, onStatus

handler is triggered and myOnStatus

handler triggers with all onStatus argu-

ments in Director. Keep in mind that third

argument of myOnStatus handler (aInfo)

is according to the “info” parameter.

Step #3:
 Now, we must connect to server. This

part is very similar in Flash and Director.

We must pass a RTMP url and an instance

name to the Connect method. In this

example room01 is an instance name for

our connection. We use instance names

in applications that hold several simulta-

neous connections (a multi-room chat for

example).

 In Flash:

client_nc.Connect(“rtmp://localhost/

 myProjectDirectory/room01”);

 In Director:

pNetConn.Connect(“rtmp://localhost/

 myProjectDirectory/room01”)

Step #4:
 Now it’s getting fun! To create the

remote shared object for our text shar-

ing we use the “getRemote” method

of SharedObject. The first parameter

of the getRemote method is an object

name. client_nc.uri is the URI of the

NetConnection. The shared object will

use it to connect to the server. The third

parameter is a Boolean that indicates

whether our shared object is persistent

on the server or not. If we set it to true

our remote shared object saves its value,

thus other users that connect later

receive the last value of the shared object

from the server. Its value remains even

when all users disconnect from server. In

this sample we don’t want our text to be

persistent to the server. Next to this line

of code we connect our created shared

object to NetConnection that was con-

structed earlier.

 In Flash:

text_so = SharedObject.

getRemote(“sharedText”, client_nc.

 uri , false);

text_so.connect(client_nc);

 To create a shared object in director we

must first get the SharedObject binding

from Flash into a variable and then use it.

The getVariable function helps us to do

so. We use false for second parameter as

“returnValueOrReference”, because we want

to get an object of Flash not its value.

 In Director:

 mySharedObject = pSprite.getVariable

 (“SharedObject”, false)

 text_so = mySharedObject.

getRemote(“sharedText”, pNetConn.

 uri. false);

 text_so.connect(pNetConn)

Step #5:
 When something changes in the

shared object, the server sends a synchro-

nization message and an onSync handler

change the information on client movie.

This way when a user changes a property

38 • MXDJ.COM 3 • 2005

assigned to a remote shared object, with

the help of this onSync handler, all con-

nected users could see those changes.

 The “list” parameter is an array that

contains information about changes

in our textbox. When a user changes

a remote shared object by typing a

character in textbox with instance

name “TypingStage”, the server sends

a message and onSync handler trigger

on all client’s machines. “list” array has

two properties, name and code. If any

change occurs, the code property is set

to “change” and when the changes assign

to our textbox this property is set to “suc-

cess”. Any change adds an entry in the list

array. Thus, when onSync handler trig-

gers, we must test the “list” array to find

out any entry with “change” value and if

so, update our textbox.

 This handler is implemented with

“function literal” method again, in Flash.

 In Flash:

 text_so.onSync = function(list){

 for (var i=0; i<list.length; i++){

 if (list[1].name == “textValue”

 && list[i].code != “success”) {

 TypingStage.text = text_so.data.

 textValue;

 Break;

 }

 }

 };

 Again, we use setCallBack to imple-

ment this code.

 In Director:

 pSprite.setCallBack(text_so,

 “onSync”, #mySyncTexts, me)

 on mySyncTexts (me, this, aList)

 repeat with i=0 to (i<aList.length)

 if (aList[i].name = “textValue” AND

 aList[i].code <> “success”) then

 member(“dirTypingStage”).text =

 text_so.data.textValue

 exit repeat

 end if

 end repeat

 end

Step #6:
 What happens when you type a char-

acter in the “dirTypingStage” textbox?

You change a textbox property and this

change must be seen by other users,

therefore, remote shared objects should

update. This is very straightforward in

Flash by using the “onChanged” event of

the Flash textbox object, but in Director

the story is a bit different.

 In Flash:

 TypingStage.onChanged = function(){

 text_so.data.textValue = TypingStage.

 text;

 };

 In Director, we have two methods to

implement this equivalent of the block of

code above. The first method that I prefer

for this sample is to use “the keyUpScript”

in the “on StartMovie” handler. We tell

Director that whenever a keyUp event has

occurred, trigger the “textChanged” han-

dler that is assigned to “the keyUpScript”.

Remember that the “keyUpScript” and

“textChanged” handler must defined in a

movie script. The second useful method

when we have several textboxes or fields,

is to assign an “on keyUp” handler to the

textbox itself as a behavior script. In this

way when a user types in textboxes other

than the “dirTypingStage” textbox, there

is not any assignment to remote shared.

But in the former method any typing from

user in any textbox in the stage causes the

call of “onSync” handler from the server.

 In Director:

 on StartMovie

 the keyUpScript = “textChanged”

 end

 on textChanged

 text_so.data.textValue =

 member(“dirTypingStage”).text

 end

 The complete listings of this sample

are shown in Listings 1 & 2. After publish-

ing your completed project you can test it

and see the result. Run your “.htm” file twice

and while typing in the textbox at one of

them, see the other textbox. If you built a

custom textbox that does something like a

text editor for a foreign language character

sets, there is no need to build same custom

textbox from the beginning in Flash to

work with FlashCom. The solution is to use

FlashCom inside Director!

Sample Two – (Shared Ball)
 In this sample we want to create a

shared ball (2D circle sprite) so that any

users visiting our Shockwave page can

change the position of the ball with their

mouse, while other users see that ball

moving on the stage. This is a technique

that is used at a higher level in several

multi-player games.

 Steps 1 and 2 are the same as previ-

ous sample, step 3 and 4 are very similar,

but with small exceptions. In step 3 we

use a new path as RTMP url and in step

4 we use “ball_so” as the name of our

shared object and use “position” as the

first parameter of getRemote method.

Step #5:
 We must now write an onSync handler.

When a user changes the position of the

ball, this changes what is stored in the x

and y properties of our sharedObject. Data

must be assigned to the ball sprite loca-

tion properties (or ball movieClip in Flash),

on the other client’s movie. When this is

done, all users see the repositioning of the

ball at the same time.

 In Flash:

 ball_so.onSync = function(list) {

 sharedBall_mc._x = ball_so.data.x;

 sahredBall_mc._y = ball_so.data.y;

end

 In Director:

 pSprite.serCallBack(ball_so,

 “onSync”, #mySyncBall, me)

 on mySyncBall me, this, aList

 sprite(“Ball”).LocH = ball_so.data.x

 sprite(“Ball”).LocV = ball_so.data.y

 end

Step #6:
 When a user changes the ball posi-

tion with their mouse, this change must

be assigned to x and y properties of

“ball_so.data”. When those properties are

changed, the server sends a synchroniza-

tion message and our “onSync” handler

triggers the other users’ machines.

This code in Flash is implemented in the

“onPress” handler of the ball movieClip

but for the best performance in Director,

we implement it on “exitframe” handler

of a frame behavior, using traditional

Director-style event handling.

 In addition to setting the x and y prop-

erties of shared object, we must ensure

that the user does not move ball out of the

stage boundaries. Therefore, if our stage

3 • 2005 MXDJ.COM • 39

size is 640 by 480, we test the posi-

tion of the ball and if it is 50 pixels

(depending on the size of the ball)

out of the stage boundaries, we

move it back into the stage.

 In Flash:

 sharedBall_mc.onPress =

 function(){

 this.onMouseMove =

 function(){

 ball_so.data.x = this._x =

 _root._xmouse;

 ball_so.data.y = this._y =

 _root._ymouse;

 if (sharedBall_mc._x >=

 stage.width){

 sharedBall_mc._x = stage.

 width – 50;

 }

 if (sharedBall_mc._x <= 0){

 sharedBall_mc._x = 50;

 }

 if (sharedBall_mc._y >=

 stage.height){

 sharedBall_mc._y = stage.

 height – 50;

 }

 if (sharedBall_mc._y <=0){

 sharedBall_mc._y = 50;

 }

 };

 sharedBall_mc.onRelease = sharedBall_

 mc.onReleaseOutSide = function(){

 delete this.onMouseMove;

 };

 In Director we create a global variable

named “isMouseDown”. Assign a behavior

to the ball sprite and use this variable to

determine if user clicks on the ball sprite

(isMouseDown = true) or not (isMouse-

Down = False).

 We use the “rect” property of the ball

sprite to test its location and the stage

boundaries. “rect” is an array that has 4

elements: the left, top, right and bottom

coordinates of the sprite.

 In Director:

 on exitFrame

 if sprite(“Ball”).rect[1] <= 0 then

 sprite(“Ball”).LocH =

 sprite(“Ball”).LocH + 50

 end if

 if sprite(“Ball”).rect[2] <= 0 then

 sprite(“Ball”).LocV =

 sprite(“Ball”).LocV + 50

 end if

 if sprite(“Ball”).rect[3] >=

 640 then

 sprite(“Ball”).LocH =

 sprite(“Ball”).LocH – 50

 end if

 if sprite(“Ball”).rect[4] >=

 480 then

 sprite(“Ball”).LocV =

 sprite(“Ball”).LocV – 50

 end if

 if isMouseDown then

 ball_so.data.x = sprite(“Ball”).LocH

 ball_so.data.y = sprite(“Ball”).LocV

 end if

 go to the frame

 end

 The complete listing of this sample is

shown in Listings 3 to 5.

 Now, you can publish the project

and run two instance of it. Drag the ball

sprite and see the effect in other running

instance.

What’s Next?
 You’ve just experienced some of

the basic concepts of using FlashCom

in Director. But all of those samples are

client-side only. When you learn how to

use server-side scripting with Director to

receive from and send messages to it, the

power of your multi-user applications will

increase greatly.

 For example, with server-side script-

ing you can manage users and verify

them to accept or reject their connection

request, and so on. Using authentication,

you could give different users differ-

ent roles in the system, assigning some

users more power in the system than

others. For example, think of our chat

system extended to include a teacher

and several students. The teacher would

have the ability to correct false informa-

tion and push additional material that

the students might not have. In a more

game-like environment, a “Game Master”

might have the ability to control the

positions of objects that the individual

players do not have the right to move.

By exploring the capabilities of the Flash

Communication Server, and its use in

Director, several of these types of applica-

tions can be built using the shared object

model.

Advertising Index

 Advertiser URL Phone Page

 CFDynamics www.cfdynamics.com 866-233-9626 3

 CFUNITED www.cfunited.com 301-424-3903 19

 ColdFusion Developer’s Journal www.sys-con.com/cfdj/subscription.cfm 888-303-5282 35

 EV1 Servers www.ev1servers.net 800-504-SURF 6

 FlashForward 2005 www.flashforwardconference.com 877-4FLASH4 15

 HostMySite.com www.hostmysite.com/mxdj 877-248-4678 58

 InterAKT www.interaktonline.com 26 & 27

 Intermedia.net www.intermedia.net 888-379-7729 25

 IT Solutions Guide www.sys-con.com 201-802-3021 49

 Macromedia www.macromedia.com/go/video5 415-252-2000 2

 Macromedia WPS www.macromedia.com/go/webupdate 415-252-2000 60

MX Developer’s Journal www.sys-con.com/mx/subscription.cfm 888-303-5282 31

 Nidus Corp. www.brainstormer.org 888-894-3840 9

 PaperThin www.paperthin.com 800-940-3087 11

 Seapine Software www.seapine.com/webdev 888-683-6456 5

 SYS-CON Newsletters www.sys-con.com 888-303-5282 57

 SYS-CON Reprints www.sys-con.com 201-802-3026 13

Nima Azimi is a software

engineer, multimedia

project manager, consul-

tant and programmer on

variety projects. His proj-

ects include educational

“How does it works”

titles for children educa-

tion with real-time 3D

content. He has worked

with Director for over

four years, and he cur-

rently teaches courses

in Director programming

and multimedia. In his

spare time he makes

highly detailed photo-

realistic 3D scenes as

a 3D artist and writes

video game scripts and

gameplay ideas that he

wishes to develop into

full games at within the

near future.

nima.azimi@gmail.com

40 • MXDJ.COM 3 • 2005

listin
g

 5

Advertising Index

 Advertiser URL Phone Page

 CFDynamics www.cfdynamics.com 866-233-9626 3

 CFUNITED www.cfunited.com 301-424-3903 19

 ColdFusion Developer’s Journal www.sys-con.com/cfdj/subscription.cfm 888-303-5282 35

 EV1 Servers www.ev1servers.net 800-504-SURF 6

 FlashForward 2005 www.flashforwardconference.com 877-4FLASH4 15

 HostMySite.com www.hostmysite.com/mxdj 877-248-4678 58

 InterAKT www.interaktonline.com 26 & 27

 Intermedia.net www.intermedia.net 888-379-7729 25

 IT Solutions Guide www.sys-con.com 201-802-3021 49

 Macromedia www.macromedia.com/go/video5 415-252-2000 2

 Macromedia WPS www.macromedia.com/go/webupdate 415-252-2000 60

MX Developer’s Journal www.sys-con.com/mx/subscription.cfm 888-303-5282 31

 Nidus Corp. www.brainstormer.org 888-894-3840 9

 PaperThin www.paperthin.com 800-940-3087 11

 Seapine Software www.seapine.com/webdev 888-683-6456 5

 SYS-CON Newsletters www.sys-con.com 888-303-5282 57

 SYS-CON Reprints www.sys-con.com 201-802-3026 13

li
st

in
g

 2
li
st

in
g

 3

listin
g

 4

li
st

in
g

 1

-- (movie script)
Global text_so

on StartMovie me
 the keyUpScript = “textChanged”
 member(“DirTypingStage”).text = “ “
end

on textChanged me
 if (the key) = Return then member(“DirTypingStage”).
text = “”
 text_so.data.textValue = member(“DirTypingStage”).text
end

(Listing 2):
-- flash sprite’s script (behavior script)
property pSprite
property pNetConn
global text_so

on beginSprite me
 -- initialize a sprite reference
 pSprite = sprite(“myFlashSpriteName”)
end

on exitFrame (me)
 -- initiate the connection if necessary
 if voidP(pNetConn) then
 me.initiateConnection()
 end if
end exitFrame

on initiateConnection (me)
 -- create a new NetConnection object
 pNetConn = pSprite.newObject(“NetConnection”)
 -- declare an onStatus callback handler
 pSprite.setCallback(pNetConn,”onStatus”,#myOnStatus,me)
 -- connect the object to the server
 pNetConn.connect(“rtmp://localhost/dir_text/Room01”)
 -- get shared object from flash object
 tSharedObject = pSprite.getVariable(“SharedObject”,
false)
 text_so = tSharedObject.getRemote(“sharedtext”, pNet-
Conn.uri, false)
 text_so.connect(pNetConn)
 -- declare an onSync callback handler
 pSprite.setCallback(text_so, “onSync”, #syncTexts, me)
end initiateConnection

on myOnStatus (me, this, aInfo)
 put “Level: “ && aInfo.level && “Code:” && aInfo.code
 if (aInfo.code = “NetConnection.Connect.Success”) then
 -- Continue
 else
 -- Alert Message
 end if
end myOnStatus

on syncTexts(me, this, aList)
 Repeat with i = 0 to (i < aList.length)
 if (alist[i].name = “textValue” AND alist[i].code <>
“success”) then
 member(“DirTypingStage”).text = text_so.data.textValue
 exit repeat
 end if
 end repeat
end

on endSprite me
 -- close the connection
 pNetConn.Close()
end

(Listing 3):
-- flash sprite’s script (behavior script)
property pSprite
property pNetConn
global ball_so

on beginSprite me
 -- initialize a sprite reference
 pSprite = sprite(“myFlashSpriteName”)
end

on exitframe me

 -- initiate the connection if necessary
 if voidP(pNetConn) then
 me.initiateConnection()
 end if
end

on initiateConnection (me)
 -- create a new NetConnection object
 pNetConn = pSprite.newObject(“NetConnection”)
 -- declare an onStatus callback handler
 pSprite.setCallback(pNetConn,”onStatus”,#myOnStatus,me)
 -- connect the object to the server
 pNetConn.connect(“rtmp://localhost/dir_sharedball/
Room01”)
 -- get shared object from flash object
 tSharedObject = pSprite.getVariable(“SharedObject”,
FALSE)
 ball_so = tSharedObject.getRemote(“position”, pNetConn.
uri, false)
 ball_so.connect(pNetConn)
 -- declare an onSync callback handler
 pSprite.setCallback(ball_so, “onSync”, #syncball, me)
end initiateConnection

on myOnStatus me, this, aArg2
 put “Level: “ && aInfo.level && “Code:” && aInfo.code
 if (aInfo.code = “NetConnection.Connect.Success”) then
 -- Continue
 else
 -- Alert Message
 end if
end myOnStatus

on syncball(me, this, aList)
 Sprite(“Ball”).LocH = ball_so.data.x
 Sprite(“Ball”).LocV = ball_so.data.y
end

on EndSprite me
 -- close the connection
 pNetConn.Close()
end

(Listing 4):
-- ball sprite’s script (behavior script)
global isMouseDown

on MouseDown me
 isMouseDown = True
end

on MouseUp me
 isMouseDown = False
end

-- (frame script)
global ball_so
global isMouseDown

on exitFrame me
 if isMouseDown then
 ball_so.data.x = sprite(“Ball”).LocH
 ball_so.data.y = sprite(“Ball”).LocV
 end if

 if Sprite(“Ball”).rect[1] <= 0 then
 Sprite(“Ball”).LocH = Sprite(“Ball”).LocH + 50
 end if

 if Sprite(“Ball”).rect[2] <= 0 then
 Sprite(“Ball”).LocV = Sprite(“Ball”).LocV + 50
 end if

 if Sprite(“Ball”).rect[3] >= 640 then
 Sprite(“Ball”).LocH = Sprite(“Ball”).LocH - 50
 end if

 if Sprite(“Ball”).rect[4] >= 480 then
 Sprite(“Ball”).LocV = Sprite(“Ball”).LocV - 50
 end if

 go to the frame
end

3 • 2005 MXDJ.COM • 41

It is not so much what is behind the mask
that matters – just as Yeats so famously
describes – as is what is revealed. This is
certainly true of graphical masking tech-
niques in general, and particularly in the
case of Fireworks masks where you have so
many options for hiding and revealing your
creations to the world.

“It was the mask engaged
your mind, And after set
your heart to beat, Not
what’s behind.”

–William Butler Yeats,
“The Mask”

Uncovering Fireworks Masks
Part 1

by kim cavanaugh

42 • MXDJ.COM 3 • 2005

It is not so much what is behind the mask
that matters – just as Yeats so famously
describes – as is what is revealed. This is
certainly true of graphical masking tech-
niques in general, and particularly in the
case of Fireworks masks where you have so
many options for hiding and revealing your
creations to the world.

“It was the mask engaged
your mind, And after set
your heart to beat, Not
what’s behind.”

–William Butler Yeats,
“The Mask”

Uncovering Fireworks Masks
Part 1

by kim cavanaugh

 A mask is simply a graphical object

that is placed on top of another image

and given instructions on how it should

interact with its partner. Masks are always

a pair of objects – the masking object

and the object that is being masked. The

beauty of masks is that they allow you to

change a design or image without ever

changing the image below the mask. You

decide how much to reveal or hide based

on your choice of masking object and the

way you apply it.

 Fireworks allows you to create masks

with either a bitmap image or with a vec-

tor object that you’ve created. This flex-

ibility gives you many options, but also

may leave you with a question. “Which

one is the right one to use?” This article

and the one to follow next month will try

to remove some of the mystery behind

masking and give you practical examples

of when to use a bitmap mask and when

a vector mask is more appropriate.

Masking Defined
 When one graphical object interacts

with another as a mask, new transpar-

ency values are created for the underly-

ing, or masked, object based on the color

of the masking object. If a mask is com-

posed entirely of white colors, the under-

lying image will be completely opaque.

If the mask is made up of nothing but

black, the object below will be entirely

transparent. That’s a simple enough

concept, but it’s really the interplay that

you can create between the range of

colors and shades between white and

black that makes masks so powerful. One

of the most common uses of masking

is the fading of images from opaque to

transparent, created by using a vector

gradient fill that transitions from white to

black. As the colors in the masking object

become progressively darker, the under-

lying image is transformed and becomes

progressively transparent.

 When a bitmap object such as a pho-

tograph is used as a mask, you have a

whole new range of creative possibilities.

Bitmaps – with their more organic appear-

ance and the millions of colors that might

be in place in the image ¬– allow for a far

wider range of interactions than are pos-

sible with vector objects. This allows you

to create effects such as you see in Figure

1, where a simple photograph has been

used to mask a text object.

Masking with Bitmaps
 The uses of bitmap objects in

Fireworks can be broken down into 3

broad categories based on the effects

they achieve:

1. A bitmap mask can be used to remove

portions of an image by erasing or

changing parts of the bitmap object.

2. Painting on top of an empty bitmap

object allows you to reveal portions of

an image depending on the settings

used for the digital paint you apply.

3. Digital photographs can be combined

with an object to provide interesting

new textures, tints, and patterns to a

composition.

 In the following mini-tutorials you’ll

see how all three effects are achieved.

Fireworks Interface Tools
for Masks
 Before moving on to the “lessons on

creating bitmap masks,” a quick review

of the way that Fireworks allows you to

apply and control bitmaps is in order.

Figure 2 shows the Fireworks Layers

panel with the controls you’ll use for

creating and controlling bitmap masks

labeled.

 Any time a mask is created in

Fireworks, the Layers panel will display a

thumbnail of the masking object side-by-

side with the masked object. The chain

link icon that separates the two lets you

see at a glance that a mask is in place.

 Remember that one of the beauti-

ful things about masks is that, while

it appears that you’re modifying the

masked object, in reality you’re only

changing the mask. No pixels are dam-

aged or removed during the masking

process, which means that if things

go astray you can simply remove the

mask and start over again. Your original

image is never changed when masks

are used.

 At the bottom of the Layers paneltake

note of the two small buttons that allow

you to generate new bitmap masking

objects. You’ll see those two buttons in

action in the first two tutorials in this

article.

Painting Over Bitmaps:
Create a Funky Image Edge
 A question that I used to hear pretty

often at the Fireworks forum was “How

do I get an irregular edge around a pho-

tograph?” It’s surprisingly easy with the

tools that Fireworks gives you. In this first

lesson you’ll learn how to apply a bitmap

mask and then paint around the perim-

eter to get one of those funky edges.

1. To begin, create a new Fireworks

document and choose File > Import.

Locate a photograph that you want

to practice with and click the Open

button. When the insert cursor

appears (a sideways “L”), click once

to paste the image onto the canvas.

(For my examples here I’m using

the sample images that ship with

Windows. You can use any digital

image of your choice.)

2. Open the Layers panel and click the

Add Mask button shown here.

 Adding a bitmap mask with this but-

ton creates a bitmap object over your

imported image that is completely

filled with white pixels. Since white

pixels allow the underlying image

to remain opaque, it doesn’t really

appear as if much has happened. The

real magic takes place by removing

or painting over some of those white

pixels.

3. Select the Paintbrush tool from the

Bitmap group in the Tools panel as

shown here.

4. Since the goal here is to hide pixels

around the edges of this image, you’ll

need to choose a black stroke color

for your Paintbrush. Painting on top

of the existing white bitmap object

with black will cause those areas to

be hidden. What’s cool about using

a bitmap brush for this effect is that

you can play with the different set-

tings for stroke and edge types to

get some very interesting effects. In

addition, painting with bitmap pixels

in Fireworks allows you to build up

paint on top of the mask by repeatedly

painting over the mask. This allows

you to create a range of opacity with

some areas remaining opaque, some

completely transparent, and gives

you a wide range of possibilities in-

between.

 In this example I used the following

settings:

• Stroke type: Watercolor, Heavy

• Edge transparency: 50

• Edge texture: Confetti

3 • 2005 MXDJ.COM • 43

 Using the Property inspector match

those settings or choose settings of your

own and stroke around the outer perim-

eter of your canvas. As you stroke on

more black pixels more of the underlying

image will become transparent. In the

end you should have a new creation simi-

lar to the one you see in Figure 3.

 This technique gives you a great deal

of freedom for creating irregular image

edges and for cool effects that move

beyond simple rectangular shapes. By

experimenting with different edges, tex-

tures, and buildup of paint your options

of making those funky edges are nearly

limitless.

Painting on a Blank Bitmap:
Revealing an Image
 Now that you’ve seen how to paint on

top of an existing bitmap, let’s look at the

second method for working with bitmap

masks. In this technique you’ll start with

a new blank bitmap object, and by paint-

ing on top of the mask, determine what

parts of the underlying image is to be

revealed.

 As with the previous technique, paint-

ing on top of an empty bitmap with the

Paintbrush tool allows you to get some

cool effects by setting the Stroke and

Edge settings for the tool. Let’s put this

method into action.

1. Create a new Fireworks document and

import the digital photo you’d like to

work on by choosing File > Import.

Paste the bitmap object into place by

clicking on the canvas when you see

the Insert cursor.

2. To add an empty bitmap object to

the canvas select on the button

you see highlighted in Figure 4, or

choose Edit > Insert > Empty Bitmap.

Either method will place an empty

bitmap above the imported image

on the canvas.

3. Once again the Paintbrush tool allows

you to build up paint onto the canvas

with a great deal of flexibility. Select

the Paintbrush and set the settings in

the Property inspector to the follow-

ing:

• Color: White

• Size: 25 pixels

• Stroke type: Unnatural > Fluid

Splatter

4. Before painting, check the Layers panel

to be sure that the empty bitmap

object – represented by the checker-

board thumbnail in the Layers panel

– is highlighted in blue to indicate that

it is selected.

5. Using the Paintbrush, stroke color over

your image. As you can see in Figure 5,

I painted the bitmap I used in a spiral

pattern so the center of the painted

area is filled with color.

6. Once you have your painted mask

all set, hold down the Shift key and

select both the bitmap and the

image that you’re masking. You can

do that directly on the canvas or

select the thumbnails in the Layers

panel.

7. Now choose Modify > Mask > Group

as Mask. Your painted mask will now

reveal the image below it, as you see

in Figure 6.

 Combining a bitmap mask with

the ability that the Paintbrush tool

gives you allows you to generate

some fascinating images. No longer

constrained to those basic rectan-

gular boxes, masking with an empty

bitmap gives you complete control

over what parts of an image you’ll

reveal to the world.

Masking with an Existing
Image: Towards More
Organic Graphics
 Vector images are terrific things.

Small in file weight, and incredibly easy

to modify, vectors are amazingly versatile.

Vectors have a drawback though in that

they often appear plastic, and lack life

and character. Sure, you can add textures,

and even a bit of noise in Fireworks MX

2004, but the vector format itself is lim-

ited when you want to create a graphic

that is a little more lifelike, or organic.

 There’s a solution though, and once

again the secret is in the masking pro-

cess. By using a bitmap object as a mask

you can start with a basic vector object

and then add a realistic texture that takes

advantage of the subtle shades and vari-

ations in texture that only the real world

provides.

 In this final lesson you’ll see how to

apply a bitmap mask over the top of

some vector-based text. As you’ll see, the

technique is similar to what you’ve done

before in that you’ll place the masking

object over the top of the object to be

masked and Voila: Organic images!

1. Create a new Fireworks document and

add some text to the document. For

my example I typed in the text “Wintry

Days” in a large heavy font. I chose

Copperplate Gothic Bold and set the

font size to 58.

2. Set the font color and a stroke to your

liking. My example uses a medium

blue fill with a stroke set to Crayon >

Basic, with a width of 2 pixels, seen

here.

3. Choose File > Import and locate an

image to your liking. I chose the file

named winter.jpg that Windows users

will find in their Sample Pictures folder.

4. Increasing the contrast before the

mask is applied will improve the mask-

ing effect that you’re about to apply.

A simple method for getting this done

is to turn to the Effects area of the

Property inspector and click the Plus

sign to add an effect. Choose Sharpen

> Sharpen More to really make the

contrast in the image pop.

5. Position your bitmap over the top of

the text. This is a good time to scale

the image, and even turn down the

opacity of the object so you can get it

just where you want it. Figure 7 shows

an image prepared and positioned

fi
g

u
re

 1
fi

g
u

re
 2

fi
g

u
re

 3

44 • MXDJ.COM 3 • 2005

over the top of the text.

6. Once the masking object is in place

turn the opacity back to 100%. Hold

down the Shift key and select both the

text and the bitmap. Remember that

this can be done either on the can-

vas, or by using the Layers panel and

selecting the thumbnails.

7. With both objects selected choose

Modify > Mask > Group as Mask. Not

too bad right? Figure 8 shows the final

results of this operation.

8. Once the mask is applied you can

tweak things a bit by selecting the

thumbnail of the bitmap in the Layers

panel and use Filters to adjust the

color further. Look

for the yellow

border to appear

around the mask-

ing object in the

Layers panel so

you know it’s

selected.

 Filters are

a destructive

process, so go

slowly and undo

if you don’t like

the effect you

achieve when the

mask is modified. Unlike Live

Effects you won’t be able to

change the image again after

the file is saved. In Figure 9

you see the results I achieved

by choosing Filters > Adjust

Color > Brightness and

Contrast.

 And there we have our

lovely masked image. Like so

many creative techniques it

takes a bit of time to develop

the knack for using bitmaps in

this manner. You’ll get

the best results when

images that have sharp

contrast between light

and dark areas are used.

Take some time to play

with different settings

and combinations of

effects and Filters until

you’re able to get your

own unique designs

looking exactly the way

you want.

Conclusion
 In this article you’ve seen three ways

that bitmaps can be used as masks.

You’ve learned that masks can be used

to hide parts of an image, to reveal parts

of an image, and for adding organic tex-

tures to objects. All of these processes are

easy enough to apply. It’s up to you to

take things to the next level in your own

designs.

 In the next article in this series you’ll

learn how to use vector objects as masks.

Using vector-based shapes and the careful

application of color fills you can remove

backgrounds from a photograph, fade

images in a multitude of different ways,

and even tint your images for some inter-

esting creative effects. As Yeats would say,

it’s all about what those masks reveal, just

as it is with bitmap masks.

Kim Cavanaugh has been teaching and

writing about web design software from

Macromedia for over 5 years. He has

written two books about Dreamweaver

and Fireworks, collaborated on books

about Dreamweaver, Fireworks, Flash

and Contribute, and continues to write

extensively about Studio MX tools for

CommunityMX.com. In addition to his

tutorials at CommunityMX, you can find

more of his tutorials at his Beginner’s

Guide website (www.dw-fw-beginners.

com) and read about things that inter-

est him at his BrainFrieze blog (www.

brainfrieze.net).

cavanaug_l@firn.edu

fi
g

u
re

 4
fi

g
u

re
 5

fi
g

u
re

 6

fi
g

u
re

 7
fi

g
u

re
 8

fi
g

u
re

 9

3 • 2005 MXDJ.COM • 45

ost of us at one time or

another have experienced

the poor result of printing

Web content from a browser. The page

printout is ugly because the printer breaks

the Web content into pages with borders

and edges. Trying to fix the HTML code

with style sheets and other layout tricks still

yields an unsatisfactory outcome. You, the

developer, and your end users desperately

need a solution for printing rich document

formats.

Likewise, if you are on the road without

Internet access and want to pass your work

to a client who is outside your company

firewall, you need a way to distribute docu-

ments easily.

You’ve already invested an enormous

amount of time and resources setting up

and publishing Web pages and articles so

they look just the way you want. You don’t

want to rework them just to generate a rich

document – you need an easy conversion

tool.

Introducing the cfdocument tag. This

new ColdFusion MX 7 feature takes your

current HTML/CFML pages and converts

them into Macromedia FlashPaper or

Adobe PDF formats in seconds. Best of all,

using this tag requires no learning curve. In

this article, we explain how the ColdFusion

team created this new functionality and

how you can use it to create printable Web

documents.

Requirements
Software: To complete this tutorial you

will need to install the following software

and files: ColdFusion MX 7 (http://www.

macromedia.com/cfusion/tdrc/index.

cfm?product=coldfusion&promoid=devcen

ter_tutorial_product_090903).

Prerequisite knowledge: Familiarity

with ColdFusion tag syntax

Your Need for the
cfdocument Tag

When it came time to brainstorm

for features in ColdFusion MX 7, many

ColdFusion team members wondered

what we could give developers, so that

you would get even more use out of

cfmx 7

Printing Rich Document Formats
with CFMX 7

How to print Web pages in FlashPaper or PDF Format
by xu chen & sherman gong

m

ta
b

le
 1

Attributes Required Optional Functionality

Format yes no Dictates what format to generate (PDF or FlashPaper)

MarginTop no yes Defaults to 0.5 inches (“Unit” attribute changes unit)

MarginBottom no yes Defaults to 0.5 inches (“Unit” attribute changes unit)

MarginLeft no yes Defaults to 0.5 inches (“Unit” attribute changes unit)

MarginRight no yes Defaults to 0.5 inches (“Unit” attribute changes unit)

BackgroundVisible no yes
Allows background color or images to appear (disabling this
attribute speeds document processing and limits memory usage)

Orientation no yes Specifies landscape or portrait

PageType no yes
Specifies letter, legal, A4, A5, B4, B5, B4-JIS, B5-JIS,
and custom

PageWidth no yes Specifies page width when selecting “Custom” PageType

PageHeight no yes Specifies page height when selecting “Custom” PageType

Encryption no yes Sets 128-bit, 40-bit, or none (PDF-only feature)

OwnerPassword no yes Sets owner password of the document when encryption is on

UserPassword no yes Sets user password of the document when encryption is on

Permissions no yes Establishes permission types

Unit no yes Sets inches or centimeters

FontEmbed no yes Embeds font with the document

Filename no yes Chooses where to save the file

Overwrite no yes Overwrites file if it exists

Name no yes Saves result content to a CF variable

Scale no yes Specifies zoom factor of the document

cfdocument Attributes

46 • MXDJ.COM 3 • 2005

ColdFusion. One theme we heard con-

sistently was how hard it is to create por-

table rich document from Web pages. We

thought, wouldn’t it be nice for developers

to be able to add a button to any Web

page, which would convert rich HTML con-

tent into easily printable PDF or FlashPaper

documents?

Your request resonated with the team.

We thought about a ColdFusion tag, one

that consumes HTML content and converts

it to rich documents. Last year, during the

MAX 2003 conference, we demonstrated

this idea in the sneak-peek session. We

heard a resounding approval from you

when we told you the possibility of pro-

viding this functionality in the next ver-

sion of ColdFusion – it was that approval

that helped us decide to make it part of

ColdFusion 7.

The development team faced many

challenges during the design and imple-

mentation phase. Foremost, HTML is a

very lenient language. HTML writers can

get away with broken syntax on modern

browsers. This factor created an enormous

challenge for parsing data and converting

it to PDF/FlashPaper-specific “language.”

During our research, we found that there

are some products out there already try-

ing to address this issue. However, most

of them either require an extra installation

procedure, such as a C++/native solution

that is not platform-friendly, or require an

expensive add-on OEM with ColdFusion.

One technology that came close to

adoption was Apache FOP, which converts

XML to PDF by relying on XSL (style sheets)

masking. The main advantage of FOP is that

it deploys on top of Java, the technology

that ColdFusion MX standardized upon.

However, the ColdFusion team found that

the Apache FOP engine only consumes

parsed XML content. It applies the XSL style

sheet for layout information and then trans-

lates it to native PDF content. Adopting

FOP would have required ColdFusion devel-

opers to edit their HTML into XHTML, which

would have increased the difficulty of their

using this feature and the learning curve for

developers. This was out of the question.

We researched the idea of autogenerating

XHTML from HTML but that was extremely

error-prone and raised other issues.

Therefore, we settled on our own solu-

tion – one that allowed us to consume

regular HTML 4.01 and CSS 1 and 2 without

requiring any modification by the devel-

oper. This greatly enhanced the developer

experience, increased the value of this fea-

ture, and – at the same time – met all our

original goals.

Easy-to-Use Solution for
Developers

As ColdFusion engineers, we like to

think that our job is to make ColdFusion

developers’ lives easier. This was the exact

mindset we applied while working on

this task. We thought, what can we create

so that all that developers need to do is

wrap their HTML with a ColdFusion tag, so

that conversion occurs once the browser

invokes the Web request? Thus, the cfdocu-

ment tag syntax was born. Here’s an over-

view of the syntax:

<cfdocument format=”flashpaper/PDF”>

<!—insert your HTML, CFML, and cfdocu-

mentitem tags->

</cfdocument>

This is it! No messy XML, Java classpath

configuration, or registering native librar-

ies. Best of all, it is a part of the ColdFusion

engine. Once you install ColdFusion, this

feature is available to you. You don’t need

to change anything in your existing HTML/

CFML content.

In addition to the simplicity of the tag’s

functionality, we also added attributes to

help you manipulate document layouts

(see Table 1). The only tag requirement is

the format attribute, which specifies to the

ColdFusion engine which type of file to

generate (PDF or FlashPaper); the others are

optional attributes.

Besides providing basic printing func-

tionality, the cfdocument tag also had to

be robust and conform to standards. Our

first priority was to support HTML 4.01. This

standard was required before anything else

because most of our users use the HTML

4.01 standard. Second, CSS versions 1 and

2 were required because style sheets are an

important part of HTML formatting, making

it a feature requirement.

The remaining tasks were to provide

image, HTML links, security, and accessibil-

ity support so that generated rich docu-

ments act similarly to browser-rendered

content. Furthermore, to support fonts that

a user specifies within HTML content, the

team built the cfdocument tag to work with

the ColdFusion font manager to locate nec-

essary fonts on the system. We took some

of the PDF-specific functionality and made

bidirectional language (such as Arabic,

Hebrew) support possible for PDF-format-

ted documents.

Using the cfdocument Tag
This is the most exciting part of intro-

ducing this feature – showing you how to

use it!

Sample 1: Using the cfdocument with

cfhttp tag

This is what makes the cfdocument tag

powerful. There is no need to edit your cur-

rent HTML. You just redirect the content of

the HTTP request through the cfdocument

tag (see Figure 1):

<cfhttp url=”http://www.w3.org/TR/REC-

html32” method=”get” resolveURL=”true”>

<cfdocument format=”flashpaper”>

 <cfoutput>#cfhttp.filecontent#</

cfoutput>

</cfdocument>

Sample 2: Using the cfdocument tag

with existing third-party report output

If you use a third-party reporting engine

fi
g

u
re

 1

Xu Chen has been a

senior software engi-

neer with Macromedia

since the days of Allaire

Corporation (in 2000).

He worked on ColdFusion

5 and 6, helping to

migrate ColdFusion from

C++ to the Java platform.

He just finished work-

ing on the release of

ColdFusion MX 7.

He has over a decade

of software develop-

ment experience.

xchen@macromedia.com

Sherman Gong joined

Macromedia in the

midst of ColdFusion 5

development and has

been with the company

as a principal software

engineer since 2000.

He has 15 years of

experience in software

development, ranging

from aerospace systems

to financial trading

systems. For the

ColdFusion MX 7

release, he was respon-

sible for font manage-

ment tasks, cfreport, and

FlashPaper output in

the cfdocument tag.

sgong@macromedia.com

3 • 2005 MXDJ.COM • 47

and plan to output the results in HTML, you

can use the cfdocument tag to help create

a portable document exactly as it appears.

This saves much time and effort on your

part because you don’t need to recreate

reports just for the purpose of printing to

rich document formats. You simply wrap

your query/report result with the tag and

it gives you the desired printing result (see

Figure 2).

Sample 3: Creating portable

documents for easier sharing

Besides printing in a visually appealing

format, you can use the cfdocument tag to

create documents that are portable and

that you can combine with the cfmail tag

to send output to other users:

<cfhttp url=”http://www.w3.org/TR/REC-

 html32” method=”get” resolveURL=”true”>

<cfdocument format=”flashpaper”

 filename=”c:\temp\w3spec.swf”>

 <cfoutput>#cfhttp.filecontent#</

 cfoutput>

</cfdocument>

<cfmail to = “recipient”

 from = “sender”

 subject = “msg_subject”

MIMEAttach = “c:\temp\w3spec.swf”>

Hi John, here is the spec you were

looking for.

Regards,

</cfmail>

Sample 4: Bidirectional text support

If you write text from right to left, you

can now use the cfdocument tag to print

(only available in PDF).

Code Examples for the
cfdocument Tag

There are a few additional supporting

subset tags for the cfdocument tag: cfdocu-

mentitem and cfdocumentsection. These

two tags provide additional format control.

The cfdocumentitem tag has three

different attributes: header, footer, and

pagebreak. Their attribute names indicate

their functionality. The header and footer

attribute values support document headers

and footers, while the pagebreak attribute

value specifies an inserted page break in

the document:

<cfdocument format=”pdf”>

 Hello World!!!

 <cfdocumentitem type=”pagebreak”/>

 <cfdocumentitem type=”header”>

 Company Name

 </cfdocumentitem >

 <cfdocumentitem type=”footer”>

<div align=”center”>

<font color=”navy” size=”1”

 face=”Tahoma”>

page

<cfoutput>

 #cfdocument.currentpagenumber#

</cfoutput>/

 <cfoutput>

 #cfdocument.totalpagecount#

 </cfoutput>

 </div>

 </ cfdocumentitem >

 <!-- insert your other HTML text

 here-->

</cfdocument>

You use the cfdocumentsection tag

to break HTML into different segments.

You can specify unique headers, footers,

and other HTML style for each section

without affecting other parts of the docu-

ment:

<cfdocument format=”flashpaper/pdf”>

 <cfdocumentsection margintop=”1”>

 <cfdocumentitem type=”header”>

Company Name

 </cfdocumentitem >

 <cfdocumentitem type=”footer”>

<div align=”center”>

<font color=”navy” size=”1”

 face=”Tahoma”>

page

<cfoutput>

 #cfdocument.currentpagenumber#

</cfoutput>/

<cfoutput>

 #cfdocument.totalpagecount#

</cfoutput>

</div>

 </ cfdocumentitem >

 <body style=”background-color:

 #dddddd”>

 Hello World!!!

 </body>

</cfdocumentsection>

<cfdocumentsection margintop=”2”>

<cfdocumentitem type=”header”>

 Different Header

</cfdocumentitem >

<cfdocumentitem type=”footer”>

 different footer

</ cfdocumentitem >

<body style=”background-color:

 #eeeeee”>

 Another Section

</body>

</cfdocumentsection>

</cfdocument>

The user-requirements criteria – ease

of use and standards support – were

key factors in creating the cfdocument

printing functionality. The cfdocument

tag gives you a tool that you can use

immediately.

We’ll continue to refine this important

feature in the future, and we welcome

your feedback. We hope you are able to

make use of this great new functionality

wherever you need to print Web content.

Credits
Xu Chen and Sherman Gong devel-

oped this technology jointly. Xu designed

the cfdocument architecture and pro-

vided the tag’s implementation and PDF

output format. Sherman Gong provided

the FlashPaper format support and font

management, and worked on the links and

anchors support with Xu. Hiroshi Okugawa

and Collin Tobin provided quality assur-

ance for the cfdocument tag and numerous

other ColdFusion features.

fi
g

u
re

 2
fi

g
u

re
 3

48 • MXDJ.COM 3 • 2005

hen the ColdFusion engi-

neering team started plan-

ning ColdFusion MX 7, we

finally had time to give the cfform tags

some love. We talked to and heard from

many customers and knew that we needed

to do a cfform tag overhaul for HTML-based

forms. We also knew that that if it was pos-

sible, we wanted to help ColdFusion devel-

opers harness the richness of Macromedia

Flash Player and open up the cfform tag

to the incredible flexibility of XForms. We

knew that if we could accomplish all of this

with a simple and easy cfform tag syntax, it

would be a big win for you, the developer,

and your application users.

 Originally, ColdFusion cfform support

was just a few tags that generated some

basic JavaScript validation – validation that

certainly had its critics. This all changed

with ColdFusion MX 7. We decided it was

time to throw out the tedious approach of

creating forms and breathe some new life

into the cfform tag.

 First we had to review the enhance-

ment requests and bug reports for the

current cfform tag to make it do what you

have wanted and needed it to do since

we introduced it. To achieve this, we had

to rewrite old tags from scratch, update

validation, add new tags, and fix a few bugs

(OK, fix a lot of bugs).

 After making a solid foundation, we

rethought the cfform tag functionality

altogether. Although this was the second

step in our development process, we

started this step years ago. When the

merger between Allaire and Macromedia

occurred, there was a lot of talk about

generating Flash from ColdFusion – spe-

cifically forms. During the development

of ColdFusion MX 6, there were numerous

“what if” discussions about the benefits of

being able to use layout managers with

HTML forms, which is similar to defin-

ing forms in Java Swing applications.

However, it wasn’t until ColdFusion MX 7

that we were able to spend the time to do

this right.

Updating the cfform Tag
 As with all product development, you

must start with evaluating the foundation.

Thus, before we could add all sorts of cool

new features to the form tags, we needed

to make the foundation rock-solid. We spent

the first cycle of development upgrading the

cfform tags. What did this involve?

 You may not know this, but some

ColdFusion tags are not written in Java;

they are actually written in CFML for use in

your CFML pages, just like the ColdFusion

custom tags you write yourself. However,

the way ColdFusion custom tags associate

with their parent wasn’t flexible enough

for the plans we had for adding XML and

Flash forms support to the form tags. So,

the first step was to rewrite these tags

from scratch as Java tags, while at the

same time adding all of the missing HTML

tags that the cfform tags didn’t generate.

Personally I always hated that I could use

cfinput to define a text field but not a sub-

mit button. One of the joys of being both

a user and developer of the product: I can

fix my own pet peeves.

 Once we finished rewriting the new

tags, we dug through the bug tracker. We

knew there were numerous enhancement

requests for the cfform tag that custom-

ers frequently requested through mailing

lists and forums. To ensure that we didn’t

miss anything, we searched for all open

bugs and enhancement requests submit-

ted all the way back to ColdFusion 3 and

then transferred them into the ColdFusion

MX 7 queue. While reviewing all of these

requests, we still decided to defer or close

some of the bugs and enhancements, but

we wanted to ensure that we evaluated

every single open bug and enhancement.

(By the way, this was a common task for

most of the ColdFusion MX 7 features, not

just the cfform tags.)

Evolving Form Validation
 At this point, the cfform tags looked

pretty good: they were a lot faster and

worked a lot smoother, but something

else was missing. For years, users had

requested new validation types, such as

e-mail and URL. There had also been many

complaints about having only JavaScript

validation for the client side (what if the

client has JavaScript disabled?). Other

complaints were about the server-side

validation we supported (it required

developers to use HTML hidden fields).

In addition, when you used server-side

validation, you couldn’t validate all of

the same types of data as you could with

client-side JavaScript validation, which

caused a frustrating discrepancy between

different validations techniques.

 To fix these issues, we synchronized all

of the validation routines from the client-

side JavaScript with the validation libraries

on the server. There were a few differ-

ences we couldn’t change for backwards

compatibility. For instance, server-side

date parsing validation allows more date

formats than the client-side JavaScript

validation; however, if you call e-mail

validation on the client or on the server

now, ColdFusion runs the same regular

expression to validate it. Of course, calling

these validation routines was still annoy-

ing because you still had to code an HTML

hidden field to trigger each field. Although

using hidden fields is still a useful way to

validate data on intranets or other applica-

tions where you control who uses your

application, there is a problem using hid-

den fields to validate data on a public site:

someone could hack your site and remove

the hidden fields, bypassing any validation

you thought was in place. We did a few

things to resolve this problem.

 If you use the hidden fields,

ColdFusion MX 7 automates their creation.

As you may know, previously you had to

code an input field and a hidden filed for

inside cfmx 7

Creating Better Forms Faster
with ColdFusion MX 7

Macromedia makes time to give the cfform tags some love
by mike nimer

w

This article was

originally published

on the Macromedia

Developer Center

http://macromedia.

com/devnet/.

50 • MXDJ.COM 3 • 2005

server-side validation. Now you don’t need

to remember the cryptic syntax to trigger

the validation in ColdFusion.

Before:

<cfinput type=”text” name=”fname”

 required=”true”>

 <input type=”hidden” name=”fname_

 required” value=”Fname is required”>

After: (in ColdFusion MX 7):

<cfinput type=”text” name=”fname”

 required=”true” validateat=”

 onServer”>

 You use the new validateAt="" attribute

to define three different location values

to validate: onSubmit (this is the default

option), onBlur (a new validation loca-

tion type), and onServer. You can mix and

match these values or specify the valida-

tion locations you would like to use as a

comma-separated list:

validateAt=”onBlur,onServer”

 On a ColdFusion page – especially a

form action page – it is a common and

best practice to validate all variables

passed into the page. To make this easier

for you, we added access to all server-side

validation routines in the cfparam tag

through the type attribute. Thus, you can

verify whether the variable exists and,

at the same time, validate the value as a

specific data type, all in one tag (this even

includes the powerful "RegEx" validation

type).

Example:

<cfif isDefined(“form.submit”)>

 <cfparam name=”form.email”

 type=”email”>

 <cfparam name=”form.password”

 type=”regex” pattern=”

 [a-z]{1,3}[0-9]{6,10}”>

 <!---

Your custom form submission logic

 goes here

--->

</cfif>

 Because this may not work for all solu-

tions, we didn’t stop with the cfparam tag

but, rather, added a new ColdFusion func-

tion, the IsValid () function as well. Use this

function to call validation routines against

any variable (for instance, you might want

to validate against a value you query from

a database).

Example:

<cfif isValid(“email”, myQuery.

 usersEmail)>

 <cfmail from=”webmaster@mysite.

 com”

 To=”#myQuery.usersEmail#”

 Subject=”System Update”>

 This is to inform you that

 at 2pm today ...

 </cfmail>

</cfif>

 Again, we could have stopped here,

because the cfform tags were now a solid

tag set with plenty of new functionality.

Instead, we knew that this new foundation

gave us stability and an opportunity to

have some fun, reinventing the way you

build forms in web applications.

New Layout Managers
 When building web applications, I

noticed that I spent the majority of my

time building forms – creating layout and

user interfaces. I don’t know about you,

but I prefer to code the back-end logic

and functionality, not the look and feel. To

make matters worse, all my forms began

the same way: a two-column table with

the label in the left column, setting the

width to 150 pixels, and a form field in the

right column. It’s a nice and simple form

(you’ve built this form haven’t you?). It

always seemed futile to me to keep rewrit-

ing this same table again and again. The

problem was, I only cared about a dozen

or so form elements, not the 200–300 lines

of HTML code that wrapped them.

 So we started thinking, wouldn’t it be

cool if developers could use layout manag-

ers like they do in other languages, such as

in Java Swing applications? The problem

is that the web and HTML do not have

layout managers; they use tables, div tags,

and span tags with absolute and relative

positioning – in essence, they have no

automatic layout logic.

 Luckily for us, many pieces came

together at the same time. First, the

Macromedia Flex team was working on

layout managers for Flash forms based

in Flex. Second, Flex is based on XML. For

years we wanted to give you the ability to

generate Flash from ColdFusion and give

you the power of rich forms available with

Flash components. With Flex, we noticed

that our prototype for XML forms – based

on the XForms schema –would map very

easily to the MXML (the Flex markup lan-

guage) we needed for Flex. This relation-

ship allowed us to expose the same CFML

syntax for the layout managers in both

XML and Flash forms.

 What do these layout managers mean

for you? It means you now can develop

forms with layout managers, giving you

more time to spend on your application’s

functionality instead of its layout.

 Even though ColdFusion MX 7 passes

the job of managing the layout to the

layout managers, you still cannot create

forms 100% automatically. There are just

too many different ways to lay out a form.

"Wouldn’t it be cool if
developers could use
layout managers like they
do in other languages,
such as in Java Swing
applications?"

3 • 2005 MXDJ.COM • 51

As you know, when you leave it to an

engine to guess what you want, things

never work the way you might like and

you may never use it.

 The key was to find a middle ground

that everyone could work with. This

middle ground had to remove the bulk of

code you would write to lay out a form,

yet still provide a way for you to define

some layout. To do this, we added a new

ColdFusion tag called cfformgroup. You

use this new tag to give formatting “hints”

to the layout managers.

 The layout managers use a number

of rules to define the layout – such as

defined widths, minimum widths of

components, overall form size, available

room left in the form, size of labels, and so

forth. Because of these rules, the groups

only provide hints, not hard-and-fast

rules. The layout managers try to do what

the group specifies, but if the fields don’t

fit, the managers lay out the fields in an

alternative format, different from what you

defined.

 For instance, if you create a group

using the type="horizontal" attribute, but

you have 10 form elements in the group,

odds are that 10 form fields side by side

will appear wider then the form’s space

limit. In this case, the layout manager does

what it can. Most likely, it will lay out three

or four fields side by side, then output

another three or four fields on the next

line, and then output a new line with the

last three fields.

 This is different than when you lay out

your form with the old HTML table meth-

ods, where each field lies in its own table

cell. In this old scenario, the form renders

off the side of the page to fit. When you

find the layout managers rendering an

unexpected output in ColdFusion MX 7,

adjust the width of the form elements; usu-

ally reducing the width of the form fields a

little can make the difference. If that doesn’t

work, increase the overall form width or

remove the individual form element labels

and use group labels instead. The following

example demonstrates how you can use

the cfformgroup tag to place the FirstName

and LastName fields next to each other,

with one shared label:

<cfformgroup type=”horizontal”

 label=”Enter Name:”>

 <cfinput type=”text”

 name=”FirstName” value=””>

<cfinput type=”text” name=”LastName”

 value=””>

 </cfformgroup>

Better User Experience
with Flash Forms
 Layout managers were not the only

reason we added the support for Flash

forms. The desire for richer form controls

and lack of cross-browser issues were con-

tributing factors as well.

To the cfformgroup tag , we also added

some groups for Flash forms that did

more than just lay out alignment – groups

could now serve as layout containers as

well. Examples of these containers are the

tabnavigator, accordion, or panel layout

containers.

 In the following example, you can cre-

ate tabs in your form using the tabnaviga-

tor container:

<cfform format=”flash”>

 <cfformgroup type=”TabNavigator”>

 <cfformgroup type=”page”

 label=”Tab 1”>

 <!-- your form elements go

 here -->

 </cfformgroup>

<cfformgroup type=”page” label=

 ”Tab 2”>

 <!-- your form elements go

 here -->

 </cfformgroup>

<cfformgroup type=”page” label=

 ”Tab 3”>

 <!-- your form elements go

 here -->

 </cfformgroup>

 </cfformgroup>

</cfform>

 Perhaps the greatest reason for adding

Flash forms support – a reason that was

by far the most requested enhancement

in ColdFusion since the merger of Allaire

and Macromedia – was to replace the Java

applets, specifically the cfgrid and cftree

controls. For those of you who like the Java

applets, don’t worry, we kept them. But

we added new Flash versions of the cfgrid

and cftree controls (there are other new

versions of the cfgrid and cftree tags as

well: XML and object). These two controls

are similar, but not identical, to the original

versions. There are still some things that

the Java applets do that the Flash controls

cannot. Likewise, there are new things that

the Flash cfgrid and cftree controls can do

that the Java applets cannot. Use them;

try them both. There is a time and place

for both controls in your applications. For

instance, the Java applets can handle a lot

more data than the Flash controls. So if you

need to output thousands of rows of data

in a grid, use the Java applet controls.

 Along with the new cfgrid and cftree

controls, we added two new rich Flash con-

trols to ColdFusion for dates and selecting

dates. One of these controls is the cfcal-

endar tag you can use inside Flash, XML,

and HTML forms (see Figure 1), just like the

cfgrid and cftree controls. Another new

control is the dateField type value for the

cfinput tag. Use this control to create a text

field with a pop-up calendar.

 Note: You can only use the dateField

type inside a Flash form.

Example:

<cfform format=”flash”>

 <cfinput type=”dateField”

 name=”startDate” label=”Start

 Date:”>

</cfform>

 Of course, Flash forms may not be for

everyone or for every form in your applica-

tion. For instance, your application may not

need the richness of Flash, or you may be

unable to run Flash in your corporate envi-

ronment. You may also need to use non-

Flash controls, or need complete control of

the whole form. This is where you would

use the XML Forms feature.

 If you want to take Flash forms to the

next level and be able extend and cus-

tomize the forms further than Flash forms

allow, check out Macromedia Flex (http://

fi
g

u
re

 1

52 • MXDJ.COM 3 • 2005

www.macromedia.com/devnet/flex/).

Extending Forms with
XML Forms
 Since we introduced the cfform tag,

there have been enhancement requests

to improve it or complaints about the way

we implemented it. With the introduction

of the XML forms, these requests and com-

plaints are no longer an issue. While Flash

forms look and work great, XML forms give

you the power to extend form functional-

ity and layouts as you see fit, especially as

you dig a little deeper and see what they

have to offer.

 We started to mull over the idea

of XML forms years ago during the

ColdFusion 6 development cycle.

Conveniently, at the same time, the W3C

was creating the XForms specification,

which was finalized in the early days

of ColdFusion MX 7 development. The

XForms schema is designed as a way to

describe a form in XML – including the

model, elements, and validation – and

with a way to extend the schema for cus-

tom implementations.

 The idea behind the XML Forms in

ColdFusion is similar to the Flash forms

– to provide a way for you to define

the form elements and layout manager

hints. However, instead of having one

predefined set of rules about the layout

managers, you have endless possibilities.

 The main benefit of XML Forms is the

separation of presentation and logic. You

can apply presentation “skins” to the forms

in your application. As the developer, you

define the fields and logic to manage the

form, including default values, validation,

and submitting to a database. Meanwhile,

those in charge of the look and feel can pick

the skin they want to apply and change it as

much as they like. Six months from now, for

instance, they could decide to change the

look of their site completely. After making

a quick change to the skin attribute or the

XSL skin file, the form would have a new

look and feel without the risk of accidentally

changing the form logic.

 If you want to write applications that

change appearance for each user, XML

forms give you an easy way to create a skin

for each customer, reusing most of the

same XSL code with only a few modifica-

tions – usually only to modify the CSS your

form skin uses. In short, you can create a

customized look for each application user.

 The XML Forms use XSL files to skin

your form. These style sheets give you

complete control over how a browser dis-

plays your form. Besides, you were looking

for an excuse to learn XML and XSL, right?

 For instance, you could write a skin

that generates the layout or the rendered

HTML in browser-specific code. Doing this

allows you to define the form functional-

ity once and then use a variable, such as

CGI.USER_AGENT, to switch between skins

using browser-specific controls: a Firefox

skin that uses CSS to render the layout, an

Internet Explorer skin that uses tables, or

a WAP skin to render the same form for

those browsing your site from their phone.

 I have found over the years that all my

forms look the same. No matter what I do,

my forms repeat the same HTML over and

over again. With a custom XML skin, how-

ever, I can spend a little time creating my

corporate skin, complete with the same

table I always end up creating, a company

logo, and any Section 508-compliant

HTML requirements. By doing this, each

form that my team or I create will have the

same consistent look and feel. This brings

“engineer art” to a whole new level!

 To avoid confusion, many of the XForm

examples available on the Internet require

a browser plug-in. These are client-side

implementations of XForms, where you

must embed XForm XML elements inside

of your XHTML document. With these

examples the browser plug-in must then

determine how to display the different

elements in the browser. However, you still

must use regular HTML to define the lay-

out of form elements – one problem that

ColdFusion MX 7 eliminates.

 With ColdFusion, we implemented a

server-side version that uses the XForms

schema definitions for form elements, bind-

ing, and the model – with custom exten-

sions instead of recreating the wheel and

creating custom XML schema that defines

form elements. However, instead of relying

on a plug-in to render the form, ColdFusion

MX 7 uses standard XSL scripts. If you

wanted to use an XForms plug-in, you could

use an XSL script to output plug-in friendly

XForm XHTML and use one of the many

XForm plug-ins to do the work on the client.

 By letting the server-side scripts decide

this, you can change the element defini-

tion on a skin-by-skin basis. For instance,

perhaps you don’t want to use a regular

HTML textarea control. Instead, you would

prefer to use a rich textarea control auto-

matically, such as the Ektron text editor.

Using a skin, you can automatically output

the ActiveX code for the text editor every

time a textarea form element is used.

 With Flash forms we introduced new

controls for the cfgrid and cftree tags; we

have also done the same for XML Forms.

In the XML forms, you can use the Java

applet or Flash version of these controls,

but you can also use the new “XML” for-

mat. This way, the XML describes the tree

or grid with the tag attributes and gener-

ates the data in the XML form definition. In

short, with this you can render controls as

you like with your XSL scripts. For instance,

you might want to output a DHTML grid

instead, or perhaps you load an ActiveX

control while still using the same simple

cfgrid or cftree syntax in ColdFusion. As an

example, I have used this XML format to

turn the cftree into a DHTML menu.

 Watch for additional articles in MXDJ

about how to write your own skins. One

easy way to learn about skins is to take

one of the sample skins we shipped with

ColdFusion MX 7. Save it as a new file-

name. At this point you now have a new

skin. Edit the HTML that the skin outputs,

the rules it includes (if you’d like to add

support for some custom widget), or the

CSS file that is associated with the skin.

You have customized your first skin!

The Wait Is Over
 Many of you at Macromedia MAX 2003

saw the early work we did on the cfform

tag. Many of you wanted us to ship it then.

Trust me, it was worth the wait to allow us

to do the job right and polish up the form

features. Thank you for your patience and

feedback. I hope you find the new cfform

tag to be a much more powerful and

enjoyable experience to use.

Mike Nimer is a senior engineer on the

ColdFusion engineering team, respon-

sible for features such as the Rich Forms

in ColdFusion 7 and the Administrator

API. Before joining the engineering team,

Mike Nimer spent three years working as

a senior consultant with Allaire and then

Macromedia consulting group, providing

on-site assistance to customers with their

architecture planning, code reviews, per-

formance tuning, and general fire fighting.

Mike blogs at http://www.mikenimer.com.

mnimer@macromedia.com

3 • 2005 MXDJ.COM • 53

vent gateways are an exciting,

new feature in Macromedia

ColdFusion MX 7 that arose

from one simple idea: that there are many

applications out there that aren’t part of

the Web and don’t communicate through

the HTTP protocol.

 These applications are on all types

of devices. They run the gamut from

the ubiquitous instant messaging cli-

ents to SMS on mobile phones to new

things that haven’t even been invented

yet. ColdFusion does a great job pow-

ering applications that run on the Web

–why not power non-Web applications

too? Not only should it be possible

for ColdFusion developers to write

applications for non-Web applications

and devices, but it should be easier

to write them in ColdFusion than any

other way.

 ColdFusion MX 7 ships with several

exciting types of event gateways that

make it easy for you to get off the ground

running with things like SMS. The server

contains a simple Java API so that you can

write your event gateway to connect to

just about anything you want. With this

extensibility, third-party software vendors

can easily provide event gateways so that

CFMX can talk to their non-CFMX applica-

tions.

Requirements
 To complete this tutorial you will need

to install the following software and files:

ColdFusion MX 7 (http://www.macrome-

dia.com/cfusion/tdrc/index.cfm?produc

t=coldfusion&promoid=devcenter_tuto-

rial_product_090903)

Overview of Event Gateways
in ColdFusion 7
 ColdFusion 7 contains a new sub-

system to support event gateways. The

gateway types are Java classes that

implement an application programming

interface (API) provided by ColdFusion.

Figure 1 shows the process for event

gateway communication. The gateways

communicate with the CF Event Gateway

Services subsystem through CFEvent

objects. The subsystem, in turn, queues

the CFEvent object requests and passes

them to the ColdFusion runtime engine

for processing, as input to ColdFusion

components (Listener CFCs). The Listener

CFC might return output to the Event

Gateway Services subsystem and then

back to the event gateway.

 Among the event gateways provided

with ColdFusion MX 7 are: SMS for mobile

text messaging; XMPP for open-standard

instant messenger networks such as

Jabber; Lotus Sametime for enterprise

instant messenger communications; and

asynchronous CFML for sending requests

from your CFML to a CFC for processing

in a separate thread. ColdFusion 7 also

provides some sample event gateways

types (with source code), including JMS

for messaging applications that support

the J2EE standard; TCP/IP Socket for use

with a telnet client to interact with your

applications; and Directory Watcher for

watching a file system directory and to

run your CFC when a user or application

creates, edits, or deletes a file in that

directory.

 You create gateway instances from

a gateway type. Instances correspond

to individual copies of a gateway

that are running. This is an object

that is started/stopped (through the

Administrator). Each gateway instance

specifies a CFC to handle incoming

messages. You can have more than one

instance of an event gateway type, and

each instance will have its own con-

figuration. For example, you can have

multiple instances of a given gateway

type, each with different logins, phone

numbers, buddy names, directories to

watch, and so forth.

New Application
Development Paradigm
 Getting into the mindset of writing

event gateway applications requires a

change in thinking from writing tradi-

tional Web applications. The paradigm is

different because you’re no longer tied

to the request/response nature of HTTP.

Event gateways are asynchronous and

can receive and send messages without

depending on each other.

 There are two basic types of event

gateway applications: initiator applica-

tions and responder applications:

1. An initiator application is a

ColdFusion application that generates

an event message from CFML code and

sends the message using a configured

event gateway instance. An example

of an initiator application is an e-com-

merce application that sends an SMS

notification when a user’s order has

shipped. The application uses the SMS

gateway to send a message, respond-

ing to some logic in the CFML code.

You can enhance any CFML application

to be the initiator. Use the sendGate-

wayMessage function to send outgoing

messages, such as SMS text messages

through an event gateway. In this

case, you use the function just like the

CFMAIL tag.

2. A responder application is a

ColdFusion application that receives

an event message that comes from

cfmx 7

Rolling Your Own Event Gateway
Writing and using event gateways in CFMX 7

by tom jordahl & jim schley

e

ta
b

le
 1

gatewayID Instance ID

data ColdFusion structure containing message data

originatorId Identifier of event sender

gatewayType Type of gateway (SMs, IM, etc.)

CF Event Structure

This article was origi-

nally published on the

Macromedia Developer

Center http://macrome-

dia.com/devnet/.

54 • MXDJ.COM 3 • 2005

external source through the listen-

ing event gateway instance. The

event gateway service forwards that

event to the listener CFC, and the

CFC method returns a response back

to the event gateway instance. An

example of a responder application is

an IM bot that responds to questions.

Responder applications are written

in CFML and use a CFC as the listener

for a gateway. The CFC listens for an

event from a given gateway instance

and processes the event structure

passed to it to return a response. The

event structure contains the message,

along with some detail about its ori-

gin (see Table 1).

 Writing an Event Gateway Application

The best way to learn about event gate-

way applications is to dive into the exam-

ples that ship with ColdFusion MX 7. Look

for these examples under the “gateway”

subdirectory in your install directory.

 The DirectoryWatcherGateway

event gateway comes preconfigured on

ColdFusion MX 7 as an example to help

you build your first CFML gateway appli-

cation. The Java source code is also avail-

able for you to learn how to write your

own Java gateway.

 This event gateway watches a directo-

ry for changes. Based on your configura-

tion file, which specifies the directory you

want to watch and file system events you

want to watch for (such as file creation,

deletion, and changes), you can also send

event objects to your CFC with the infor-

mation when any event occurs.

 In the following example, a CFC

processes events using the Directory

WatcherGateway event gateway:

<cffunction name=”onAdd” output=”no”>

 <cfargument name=”CFEvent”

 type=”struct”>

 <!--- get event data --->

 <cfset data=CFEvent.data>

 <!--- log a message --->

 <cflog file=”watch”

 text=”a file was #data.type#

 and “ &

 “the name was #data.file

 name#”>

 <!--- watcher will ignore outgoing

 messages --->

</cffunction>

 The code is pretty simple – the func-

tion takes the event object as an argu-

ment and treats it like a simple CFML

struct datatype. The data key of the struct

contains a message that describes the

file system event. The two entries in this

struct are as follows:

• filename of the file that changed

• type of change that happened: add,

delete, or change

 The event gateway also contains an

entry, lastModified, which specifies the time

an added or changed file was last modified.

Detailed Look at the
ColdFusion Event Structure
 Understanding what an event object

contains and passes to your CFC as an

argument through the event gateway

is essential to writing your application.

The event object is a Java object that

maps to a CFML structure. Each event

gateway type puts different data into an

event object, so it’s important to look at

the gateway author’s documentation to

know what to expect. The CFEvent object

includes whatever it is that the event

gateway is trying communicate to your

application. The event gateways provided

with ColdFusion are well documented.

The SMS event gateway event data struc-

ture contains the following information:

• shortMessage is the text message data

• sourceAddress is the phone number of

the message sender

• destAddress is the phone number of

the message recipient

 The SMS event gateway event data

contains additional fields that you may

fill, depending on the network carrier.

You can read more about the SMS event

gateway in the detailed chapter from

ColdFusion MX Developer’s Guide (http://

livedocs.macromedia.com/coldfusion/7/

htmldocs/wwhelp/wwhimpl/common/

html/wwhelp.htm?context=ColdFusion_

Documentation&file=00001666.htm).

 The instant messenger (IM) event

gateway event data structure contains

the following information:

• message is the instant message text

• sender is the user ID of the message

sender

• recipient is the user ID of the message

recipient

• timestamp includes date/time data

when the message was sent

 You can read more about the IM event

gateway in the chapter from ColdFusion

MX Developer’s Guide (http://livedocs.

macromedia.com/coldfusion/7/html-

docs/wwhelp/wwhimpl/common/html/

wwhelp.htm?context=ColdFusion_Docu

mentation&file=00001651.htm)

 In the event object, use the gatewayType

key to identify the event gateway type

sending the message to the CFC. This is

useful for a CFC that handles input from

multiple event gateway types. For instance,

you might have an application that commu-

fi
g

u
re

 1

“ColdFusion MX 7 is
extensible. Anyone can
write an event gateway
using the ColdFusion API”
3 • 2005 MXDJ.COM • 55

nicates with mobile phones using SMS and

Lotus Sametime IM clients. Because there

are two different event gateway types send-

ing input to your application, each with its

own version of the event object, it’s best to

evaluate the value of the gatewayType key

before processing the incoming data.

 The sendGatewayMessage Function

Use the new sendGatewayMessage CFML

function to send event objects to an

event gateway directly from your CFML

code—from any CFC or CFML page.

Use the following code syntax:

endGatewayMessage (gwid, data)

• Argument 1: Gateway ID – Name of

the gateway instance configured in the

ColdFusion Administrator

• Argument 2: Data – CFML struct with

name/value pairs that corresponds to

an event object for the gateway

 When creating a structure for an outgo-

ing IM event object, use the following syntax:

<cfset data = structNew()>

<cfset data.message = “hello”>

<cfset data.buddyId = “cfguy”>

 When sending the message through

the XMPP event gateway, use the follow-

ing syntax:

<cfscript>

sendGatewayMessage(“XMPP

 server1”,data);

</cfscript>

What to Specify in
Outgoing Data
 Just as each gateway type has differ-

ent event object data to pass to the CFC,

each gateway type requires different data

in the event object that it will process for

outgoing messages. The event gateway’s

documentation specifies what it requires

for data. Many gateways have a few

required data items and many optional

items. The design is flexible and allows for

an unlimited number of data items.

For example, the IM event gateways

requires the buddyID and message data

items, but optionally accepts the command

data item, with values of accept, decline, or

submit. If the value is accept or decline (for

instance, to respond to a request to add

the gateway user to a sender’s buddy list),

you can optionally set the reason data item,

which specifies explanation text.

 The SMS event gateway has a long list

of optional data items that an outgoing

event object can contain. The optional

data items correspond to specific options

in the SMPP protocol, which communi-

cates SMS messages on mobile carrier

networks. The ColdFusion team did our

best to include every single option in the

SMPP specification, even though different

carriers implement the specification dif-

ferently. For instance, you can optionally

set a registeredDelivery data item in your

outgoing event object to request delivery

receipt for your SMS.

The getGatewayHelpers
Function
 Use the getGatewayHelper function

to provide additional functionality to

ColdFusion applications according to the

event gateway’s purpose. The IM event

gateways, for example, provide buddy-

list management functionality using an

event gateway helper.

 Use the following code syntax:

getGatewayHelper (gwid)

• Argument: Gateway ID – Name of the

event gateway instance configured in

the ColdFusion Administrator

 This function returns an object on

which helper functions can be called.

For the IM event gateways, this returned

object has addBuddy (), remveBuddy (),

and getBuddyList () functions available for

buddy-list management. These are just

some of the functions that the IM gate-

way helper makes available.

 The following code example adds a

new buddy with the user ID, cfuser2, to

the server user’s buddy list:

<cfscript>

imhelper=getGatewayHelper(“XMPP_

 server1”);

imhelper.addBuddy(“cfuser2”);

</cfscript>

Instant Message Example
 Getting started with an instant mes-

saging application requires first setting

up an event gateway instance in the

ColdFusion Administrator. To set up the

instance, specify a configuration file with

the connection details for the IM network.

 The following is an example of what

your configuration file for the XMPP

event gateway might look like:

XMPP Instant Message Configuration

 file

userid=yourid@jabber.org

password=yourpassword

everything else is OK to default

serverip=jabber.org

serverport=5222

retries=5

retryinterval=10

onInComingMessageFunction=

 onIncomingMessage

onAddBuddyRequestFunction=

 onAddBuddyRequest

onAddBuddyResponseFunction=

 onAddBuddyResponse

onBuddyStatusFunction=onBuddyStatus

onIMServerMessageFunction=

 onIMServerMessage

 You also specify the listener CFC. The

following is an example of a simple CFC

that echoes an instant message sent to it

with the original text:

<cfcomponent>

<cffunction name=”onIncomingMessage”

 output=”no”>

<cfargument name=”CFEvent”

 type=”struct” required=”yes”>

 <!--- Get the message --->

 <cfset data=cfevent.DATA>

 <cfset message=”#data.message#”>

 <!--- where did it come from? --->

 <cfset orig=”#CFEvent.

 originatorID#”>

 <!--- make a struct to return --->

figure 2

fi
g

u
re

 3

56 • MXDJ.COM 3 • 2005

 <cfset retValue = structNew()>

 <cfset retValue.message

 = ”Your message: ” & message>

 <cfset retValue.buddyId = orig>

 <!--- send the return message

 back --->

 <cfreturn retValue>

</cffunction>

</cfcomponent>

 Once you have your configuration

file and CFC set up (see Figure 2), you’re

ready to create the event gateway

instance in the ColdFusion Administrator.

After you start the event gateway

instance (see Figure 3), you’re ready to

start using the IM application.

Rolling Your Own Event
Gateway
 If you need to create an event

gateway for an application, protocol,

or purpose that you can’t accomplish

with the built-in, sample, or third-party

event gateway types, remember that

ColdFusion MX 7 is extensible. Anyone

can write an event gateway using the

ColdFusion API.

 You must know Java to write an event

gateway, but you can start with the docu-

mented sample code. Also check out of

the chapter on ColdFusion MX Developer's

Guide: Creating Custom Event Gateways in

the documentation; it walks you through

all the necessary details to create and run

your own event gateway type.

 Event gateway applications are easy

to write once you understand the pro-

gramming model available to you. Once

you realize that your ColdFusion applica-

tions do not depend on an HTTP request/

response paradigm, you’ll see how event

gateways open up a whole new world of

possibilities for you. ColdFusion is no lon-

ger confined to the Web.

Tom Jordahl is the principal engineer

and technical lead for the ColdFusion

Blackstone project. As part of the original

ColdFusion team, he has implemented a

wide variety of tags, functions, and features

in both the original (C++) and MX (Java)

releases of ColdFusion. Tom thinks CFMX

7 is going to rock, particularly the event

gateway feature. He is one of the primary

implementers of the Apache Axis SOAP

engine and is the Macromedia represen-

tative on the W3C WSDL 2.0 Working

Group. tjordahl@macromedia.com

Jim Schley has seven years’ experience

building Web applications and has been

programming with ColdFusion since

version 2.0. He has built e-commerce

sites and enterprise Web applications

for such customers as the US Mint, the

FAA, Pfizer, Pharmacia, The BOC Group,

and Schering-Plough. For Macromedia,

he works as Principal QA Engineer

for ColdFusion, concentrating most of

his efforts on product performance.

jschley@macromedia.com

“ColdFusion is no longer
confined to the Web”

3 • 2005 MXDJ.COM • 57

ames Hill Design Limited is a seven-year-old

design agency borne out of equal parts inspi-

ration and frustration – frustration at working

for other people whose vision didn’t match

ours, and inspiration to do our own thing

and make our own mark on this already marked-up

world. However, due to the shifting nature of the

business as well as the shifting locations of the prin-

cipals (Jamaica, Canada, or New York depending on

the mood), an Internet presence became essential. In

order to keep up with the global way of doing things,

this Web site was done in collaboration with the

Canadian firm Sumo who did the lion’s share of the

programming, posting, and a good bit of the design-

ing from the original print and multimedia materials

that we had already created for our corporate identity.

As James Hill becomes more and more of an entity

rather than a place, our Web site has become our

most crucial marketing and communication tool.

It has also freed us from country boundaries. Now

clients see us as a world class design firm first, and

a Jamaican company second. The Web site has also

opened us up to a new kind of client, as boundary-

free as we are, with only one concern: getting damn

good creative. www.jameshilldesign.com

The Unusual Suspects

jva
n

g
u

a
rd

1 • 200558 • MXDJ.COM

